ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator topology for logarithmic infinitesimal generators

124   0   0.0 ( 0 )
 نشر من قبل Yoritaka Iwata
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yoritaka Iwata




اسأل ChatGPT حول البحث

Generally-unbounded infinitesimal generators are studied in the context of operator topology. Beginning with the definition of seminorm, the concept of locally convex topological vector space is introduced as well as the concept of Fr{e}chet space. These are the basic concepts for defining an operator topology. Consequently, by associating the topological concepts with the convergence of sequence, a suitable mathematical framework for obtaining the logarithmic representation of infinitesimal generators is presented.



قيم البحث

اقرأ أيضاً

74 - Yoritaka Iwata 2021
The logarithmic representation of infinitesimal generators is generalized to the cases when the evolution operator is unbounded. The generalized result is applicable to the representation of infinitesimal generators of unbounded evolution operators, where unboundedness of evolution operator is an essential ingredient of nonlinear analysis. In conclusion a general framework for the identification between the infinitesimal generators with evolution operators is established. A mathematical framework for such an identification is indispensable to the rigorous treatment of nonlinear transforms: e.g., transforms appearing in the theory of integrable systems.
64 - Yoritaka Iwata 2019
The concept of logarithmic representation of infinitesimal generators is introduced, and it is applied to clarify the algebraic structure of bounded and unbounded infinitesimal generators. In particular, by means of the logarithmic representation, th e bounded components can be extracted from generally-unbounded infinitesimal generators. In conclusion the concept of module over a Banach algebra is proposed as the generalization of Banach algebra. As an application to mathematical physics, the rigorous formulation of rotation group, which consists of unbounded operators being written by differential operators, is provided using the module over a Banach algebra.
373 - Shuzhou Wang , Zhenhua Wang 2020
We initiate the study of relative operator entropies and Tsallis relative operator entropies in the setting of JB-algebras. We establish their basic properties and extend the operator inequalities on relative operator entropies and Tsallis relative o perator entropies to this setting. In addition, we improve the lower and upper bounds of the relative operator $(alpha, beta)$-entropy in the setting of JB-algebras that were established in Hilbert space operators setting by Nikoufar [18, 20]. Though we employ the same notation as in the classical setting of Hilbert space operators, the inequalities in the setting of JB-algebras have different connotations and their proofs requires techniques in JB-algebras.
179 - Shuzhou Wang , Zhenhua Wang 2020
In this paper, the notion of operator means in the setting of JB-algebras is introduced and their properties are studied. Many identities and inequalities are established, most of them have origins from operators on Hilbert space but they have differ ent forms and connotations, and their proofs require techniques in JB-algebras.
We provide a ribbon tensor equivalence between the representation category of small quantum SL(2), at parameter q=exp($pi$ i/p), and the representation category of the triplet vertex operator algebra at integral parameter p>1. We provide similar quan tum group equivalences for representation categories associated to the Virasoro, and singlet vertex operator algebras at central charge c=1-6(p-1)^2/p. These results resolve a number of fundamental conjectures coming from studies of logarithmic CFTs in type A_1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا