ﻻ يوجد ملخص باللغة العربية
A formalism for describing charged particles interaction in both a finite volume and a uniform magnetic field is presented. In the case of short-range interaction between charged particles, we show that the factorization between short-range physics and finite volume long-range correlation effect is possible, a Luscher formula-like quantization condition is thus obtained.
In present work, we discuss some topological features of charged particles interacting a uniform magnetic field in a finite volume. The edge state solutions are presented, as a signature of non-trivial topological systems, the energy spectrum of edge
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{
In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the $KD^{(*)}$ systems, where t
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativi
In present work, we study an numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise $delta$-function potentials. The num