ﻻ يوجد ملخص باللغة العربية
In present work, we study an numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise $delta$-function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when strength of short-range interactions are set equal for all pairs.
In this work, based on consideration of periodicity and asymptotic forms of wave function, we propose a novel approach to the solution of finite volume three-body problem by mapping a three-body problem into a higher dimensional two-body problem. The
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{
Using the general formalism presented in Refs. [1,2], we study the finite-volume effects for the $mathbf{2}+mathcal{J}tomathbf{2}$ matrix element of an external current coupled to a two-particle state of identical scalars with perturbative interactio
We discuss signatures of bound-state formation in finite volume via the Luscher finite size method. Assuming that the phase-shift formula in this method inherits all aspects of the quantum scattering theory, we may expect that the bound-state formati
Using the framework of non-relativistic effective field theory, the finite-volume ground-state energy shift is calculated up-to-and-including $O(L^{-6})$ for the system of three pions in the channel with the total isospin $I=1$. The relativistic corr