ﻻ يوجد ملخص باللغة العربية
In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the $KD^{(*)}$ systems, where the states $D^*_{s0}(2317)$ and $D^*_{s1}(2460)$ are found as bound states of $KD$ and $KD^*$, respectively. We confirm the presence of such states in the lattice data and determine the contribution of the $KD$ channel in the wave function of $D^*_{s0}(2317)$ and that of $KD^*$ in the wave function of $D^*_{s1}(2460)$. Our findings indicate a large meson-meson component in the two cases.
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativi
One of the more important systematic effects affecting lattice computations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_mu^{rm HVP}$, is the distortion due to a finite spatial volume. In order to
We extend previous work concerning rest-frame partial-wave mixing in Hamiltonian effective field theory to both elongated and moving systems, where two particles are in a periodic elongated cube or have nonzero total momentum, respectively. We also c
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{
A formalism for describing charged particles interaction in both a finite volume and a uniform magnetic field is presented. In the case of short-range interaction between charged particles, we show that the factorization between short-range physics a