ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Health Misinformation Transmission: An Interpretable Deep Learning Approach to Manage Infodemics

46   0   0.0 ( 0 )
 نشر من قبل Jiaheng Xie
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Health misinformation on social media devastates physical and mental health, invalidates health gains, and potentially costs lives. Understanding how health misinformation is transmitted is an urgent goal for researchers, social media platforms, health sectors, and policymakers to mitigate those ramifications. Deep learning methods have been deployed to predict the spread of misinformation. While achieving the state-of-the-art predictive performance, deep learning methods lack the interpretability due to their blackbox nature. To remedy this gap, this study proposes a novel interpretable deep learning approach, Generative Adversarial Network based Piecewise Wide and Attention Deep Learning (GAN-PiWAD), to predict health misinformation transmission in social media. Improving upon state-of-the-art interpretable methods, GAN-PiWAD captures the interactions among multi-modal data, offers unbiased estimation of the total effect of each feature, and models the dynamic total effect of each feature when its value varies. We select features according to social exchange theory and evaluate GAN-PiWAD on 4,445 misinformation videos. The proposed approach outperformed strong benchmarks. Interpretation of GAN-PiWAD indicates video description, negative video content, and channel credibility are key features that drive viral transmission of misinformation. This study contributes to IS with a novel interpretable deep learning method that is generalizable to understand other human decision factors. Our findings provide direct implications for social media platforms and policymakers to design proactive interventions to identify misinformation, control transmissions, and manage infodemics.



قيم البحث

اقرأ أيضاً

In an ever expanding set of research and application areas, deep neural networks (DNNs) set the bar for algorithm performance. However, depending upon additional constraints such as processing power and execution time limits, or requirements such as verifiable safety guarantees, it may not be feasible to actually use such high-performing DNNs in practice. Many techniques have been developed in recent years to compress or distill complex DNNs into smaller, faster or more understandable models and controllers. This work seeks to identify reduced models that not only preserve a desired performance level, but also, for example, succinctly explain the latent knowledge represented by a DNN. We illustrate the effectiveness of the proposed approach on the evaluation of decision tree variants and kernel machines in the context of benchmark reinforcement learning tasks.
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Thus, deep R L opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. We assume the reader is familiar with basic machine learning concepts.
The rise in online misinformation in recent years threatens democracies by distorting authentic public discourse and causing confusion, fear, and even, in extreme cases, violence. There is a need to understand the spread of false content through onli ne networks for developing interventions that disrupt misinformation before it achieves virality. Using a Deep Bidirectional Transformer for Language Understanding (BERT) and propagation graphs, this study classifies and visualizes the spread of misinformation on a social media network using publicly available Twitter data. The results confirm prior research around user clusters and the virality of false content while improving the precision of deep learning models for misinformation detection. The study further demonstrates the suitability of BERT for providing a scalable model for false information detection, which can contribute to the development of more timely and accurate interventions to slow the spread of misinformation in online environments.
We propose a novel theoretical framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks (e.g., SimCLR). First, we prove that in each SGD update of SimCLR with various loss functions, incl uding simple contrastive loss, soft Triplet loss and InfoNCE loss, the weights at each layer are updated by a emph{covariance operator} that specifically amplifies initial random selectivities that vary across data samples but survive averages over data augmentations. To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emph{hierarchical latent tree model} (HLTM) and prove that the hidden neurons of deep ReLU networks can learn the latent variables in HLTM, despite the fact that the network receives emph{no direct supervision} from these unobserved latent variables. This leads to a provable emergence of hierarchical features through the amplification of initially random selectivities through contrastive SSL. Extensive numerical studies justify our theoretical findings. Code is released in https://github.com/facebookresearch/luckmatters/tree/master/ssl.
Recent years have witnessed an increased focus on interpretability and the use of machine learning to inform policy analysis and decision making. This paper applies machine learning to examine travel behavior and, in particular, on modeling changes i n travel modes when individuals are presented with a novel (on-demand) mobility option. It addresses the following question: Can machine learning be applied to model individual taste heterogeneity (preference heterogeneity for travel modes and response heterogeneity to travel attributes) in travel mode choice? This paper first develops a high-accuracy classifier to predict mode-switching behavior under a hypothetical Mobility-on-Demand Transit system (i.e., stated-preference data), which represents the case study underlying this research. We show that this classifier naturally captures individual heterogeneity available in the data. Moreover, the paper derives insights on heterogeneous switching behaviors through the generation of marginal effects and elasticities by current travel mode, partial dependence plots, and individual conditional expectation plots. The paper also proposes two new model-agnostic interpretation tools for machine learning, i.e., conditional partial dependence plots and conditional individual partial dependence plots, specifically designed to examine response heterogeneity. The results on the case study show that the machine-learning classifier, together with model-agnostic interpretation tools, provides valuable insights on travel mode switching behavior for different individuals and population segments. For example, the existing drivers are more sensitive to additional pickups than people using other travel modes, and current transit users are generally willing to share rides but reluctant to take any additional transfers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا