ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Heterogeneity in Mode-Switching Behavior Under a Mobility-on-Demand Transit System: An Interpretable Machine Learning Approach

119   0   0.0 ( 0 )
 نشر من قبل Xilei Zhao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years have witnessed an increased focus on interpretability and the use of machine learning to inform policy analysis and decision making. This paper applies machine learning to examine travel behavior and, in particular, on modeling changes in travel modes when individuals are presented with a novel (on-demand) mobility option. It addresses the following question: Can machine learning be applied to model individual taste heterogeneity (preference heterogeneity for travel modes and response heterogeneity to travel attributes) in travel mode choice? This paper first develops a high-accuracy classifier to predict mode-switching behavior under a hypothetical Mobility-on-Demand Transit system (i.e., stated-preference data), which represents the case study underlying this research. We show that this classifier naturally captures individual heterogeneity available in the data. Moreover, the paper derives insights on heterogeneous switching behaviors through the generation of marginal effects and elasticities by current travel mode, partial dependence plots, and individual conditional expectation plots. The paper also proposes two new model-agnostic interpretation tools for machine learning, i.e., conditional partial dependence plots and conditional individual partial dependence plots, specifically designed to examine response heterogeneity. The results on the case study show that the machine-learning classifier, together with model-agnostic interpretation tools, provides valuable insights on travel mode switching behavior for different individuals and population segments. For example, the existing drivers are more sensitive to additional pickups than people using other travel modes, and current transit users are generally willing to share rides but reluctant to take any additional transfers.

قيم البحث

اقرأ أيضاً

193 - Xilei Zhao , Xiang Yan , Alan Yu 2018
Logit models are usually applied when studying individual travel behavior, i.e., to predict travel mode choice and to gain behavioral insights on traveler preferences. Recently, some studies have applied machine learning to model travel mode choice a nd reported higher out-of-sample predictive accuracy than traditional logit models (e.g., multinomial logit). However, little research focuses on comparing the interpretability of machine learning with logit models. In other words, how to draw behavioral insights from the high-performance black-box machine-learning models remains largely unsolved in the field of travel behavior modeling. This paper aims at providing a comprehensive comparison between the two approaches by examining the key similarities and differences in model development, evaluation, and behavioral interpretation between logit and machine-learning models for travel mode choice modeling. To complement the theoretical discussions, the paper also empirically evaluates the two approaches on the stated-preference survey data for a new type of transit system integrating high-frequency fixed-route services and ridesourcing. The results show that machine learning can produce significantly higher predictive accuracy than logit models. Moreover, machine learning and logit models largely agree on many aspects of behavioral interpretations. In addition, machine learning can automatically capture the nonlinear relationship between the input features and choice outcomes. The paper concludes that there is great potential in merging ideas from machine learning and conventional statistical methods to develop refined models for travel behavior research and suggests some new research directions.
There is significant interest in learning and optimizing a complex system composed of multiple sub-components, where these components may be agents or autonomous sensors. Among the rich literature on this topic, agent-based and domain-specific simula tions can capture complex dynamics and subgroup interaction, but optimizing over such simulations can be computationally and algorithmically challenging. Bayesian approaches, such as Gaussian processes (GPs), can be used to learn a computationally tractable approximation to the underlying dynamics but typically neglect the detailed information about subgroups in the complicated system. We attempt to find the best of both worlds by proposing the idea of decomposed feedback, which captures group-based heterogeneity and dynamics. We introduce a novel decomposed GP regression to incorporate the subgroup decomposed feedback. Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches; it also allows us to introduce a decomposed GP-UCB optimization algorithm that leverages subgroup feedback. The Bayesian nature of our method makes the optimization algorithm trackable with a theoretical guarantee on convergence and no-regret property. To demonstrate the wide applicability of this work, we execute our algorithm on two disparate social problems: infectious disease control in a heterogeneous population and allocation of distributed weather sensors. Experimental results show that our new method provides significant improvement compared to the state-of-the-art.
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks. However, their accuracy comes at the cost of intelligibility: it is usually unclear how they make their decisions. Thi s hinders their applicability to high stakes decision-making domains such as healthcare. We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models. NAMs learn a linear combination of neural networks that each attend to a single input feature. These networks are trained jointly and can learn arbitrarily complex relationships between their input feature and the output. Our experiments on regression and classification datasets show that NAMs are more accurate than widely used intelligible models such as logistic regression and shallow decision trees. They perform similarly to existing state-of-the-art generalized additive models in accuracy, but can be more easily applied to real-world problems.
Outlier detection is an important task for various data mining applications. Current outlier detection techniques are often manually designed for specific domains, requiring large human efforts of database setup, algorithm selection, and hyper-parame ter tuning. To fill this gap, we present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support, which automatically optimizes an outlier detection pipeline for a new data source at hand. Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space. PyODDS enables end-to-end executions based on an Apache Spark backend server and a light-weight database. It also provides unified interfaces and visualizations for users with or without data science or machine learning background. In particular, we demonstrate PyODDS on several real-world datasets, with quantification analysis and visualization results.
111 - Limon Barua , Bo Zou , Yan Zhou 2021
Despite the rapid growth of online shopping and research interest in the relationship between online and in-store shopping, national-level modeling and investigation of the demand for online shopping with a prediction focus remain limited in the lite rature. This paper differs from prior work and leverages two recent releases of the U.S. National Household Travel Survey (NHTS) data for 2009 and 2017 to develop machine learning (ML) models, specifically gradient boosting machine (GBM), for predicting household-level online shopping purchases. The NHTS data allow for not only conducting nationwide investigation but also at the level of households, which is more appropriate than at the individual level given the connected consumption and shopping needs of members in a household. We follow a systematic procedure for model development including employing Recursive Feature Elimination algorithm to select input variables (features) in order to reduce the risk of model overfitting and increase model explainability. Extensive post-modeling investigation is conducted in a comparative manner between 2009 and 2017, including quantifying the importance of each input variable in predicting online shopping demand, and characterizing value-dependent relationships between demand and the input variables. In doing so, two latest advances in machine learning techniques, namely Shapley value-based feature importance and Accumulated Local Effects plots, are adopted to overcome inherent drawbacks of the popular techniques in current ML modeling. The modeling and investigation are performed both at the national level and for three of the largest cities (New York, Los Angeles, and Houston). The models developed and insights gained can be used for online shopping-related freight demand generation and may also be considered for evaluating the potential impact of relevant policies on online shopping demand.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا