ﻻ يوجد ملخص باللغة العربية
Compact cold-atom sensors depend on vacuum technology. One of the major limitations to miniaturizing these sensors are the active pumps -- typically ion pumps -- required to sustain the low pressure needed for laser cooling. Although passively pumped chambers have been proposed as a solution to this problem, technical challenges have prevented successful operation at the levels needed for cold-atom experiments. We present the first demonstration of a vacuum package successfully independent of ion pumps for more than a week; our vacuum package is capable of sustaining a cloud of cold atoms in a magneto-optical trap (MOT) for greater than 200 days using only non-evaporable getters and a rubidium dispenser. Measurements of the MOT lifetime indicate the package maintains a pressure of better than $2times10^{-7}$ Torr. This result will significantly impact the development of compact atomic sensors, including those sensitive to magnetic fields, where the absence of an ion pump will be advantageous.
We have observed a distance-dependent absorption linewidth of cold $^{87}$Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was c
We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- an
We report our observations of HSC16aayt (SN 2016jiu), which was discovered by the Subaru/Hyper Suprime-Cam (HSC) transient survey conducted as part of Subaru Strategic Program (SSP). It shows very slow photometric evolution and its rise time is more
We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experim
We present an experimental realization of a moving magnetic trap decelerator, where paramagnetic particles entrained in a cold supersonic beam are decelerated in a co-moving magnetic trap. Our method allows for an efficient slowing of both paramagnet