ترغب بنشر مسار تعليمي؟ اضغط هنا

HSC16aayt: Slowly evolving interacting transient rising for more than 100 days

228   0   0.0 ( 0 )
 نشر من قبل Takashi J. Moriya
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report our observations of HSC16aayt (SN 2016jiu), which was discovered by the Subaru/Hyper Suprime-Cam (HSC) transient survey conducted as part of Subaru Strategic Program (SSP). It shows very slow photometric evolution and its rise time is more than 100 days. The optical magnitude change in 400 days remains within 0.6 mag. Spectra of HSC16aayt show a strong narrow emission line and we classify it as a Type IIn supernova. The redshift of HSC16aayt is 0.6814 +/- 0.0002 from the spectra. Its host galaxy center is at 5 kpc from the supernova location and HSC16aayt might be another example of isolated Type IIn supernovae, although the possible existence of underlying star forming activity of the host galaxy at the supernova location is not excluded.



قيم البحث

اقرأ أيضاً

Rapidly evolving transients form a new class of transients which show shorter timescales of the light curves than those of typical core-collapse and thermonuclear supernovae. We performed a systematic search for rapidly evolving transients using the deep data taken with the Hyper Suprime-Cam Subaru Strategic Program Transient Survey. By measuring the timescales of the light curves of 1824 transients, we identified 5 rapidly evolving transients. Our samples are found in a wide range of redshifts (0.3 $le$ z $le$ 1.5) and peak absolute magnitudes ($-$17 $ge$ $M_i$ $ge$ $-$20). The properties of the light curves are similar to those of the previously discovered rapidly evolving transients. They show a relatively blue spectral energy distribution, with the best-fit blackbody of 8,000 - 18,000 K. We show that some of the transients require power sources other than the radioactive decays of $^{56}$Ni because of their high peak luminosities and short timescales. The host galaxies of all the samples are star-forming galaxies, suggesting a massive star origin for the rapidly evolving transients. The event rate is roughly estimated to be $sim$4,000 events yr$^{-1}$ Gpc$^{-3}$, which is about 1 $%$ of core-collapse supernovae.
We present partial results from our monitoring of the nuclear region of the starburst galaxy IC 694 (=Arp 299-A) at radio wavelengths, aimed at discovering recently exploded CCSNe, as well as to determine their rate of explosion, which carries crucia l information on star formation rates and starburst scenarios at work. Two epochs of eEVN observations at 5.0 GHz, taken in 2008, revealed the presence of a rich cluster of compact radio emitting sources in the central 150 pc of the nuclear starburst in Arp 299A. The large brightness temperatures observed for the compact sources indicate a non-thermal origin for the observed radio emission, implying that most, if not all, of those sources were young radio supernovae (RSNe) and supernova remnants (SNRs). More recently, contemporaneous EVN observations at 1.7 and 5.0 GHz taken in 2009 have allowed us to shed light on the compact radio emission of the parsec-scale structure in the nucleus of Arp 299-A. Namely, our EVN observations have shown that one of the compact VLBI sources, A1, previously detected at 5.0 GHz, has a flat spectrum between 1.7 and 5.0 GHz and is the brightest source at both frequencies. The morphology, radio luminosity, spectral index and ratio of radio-to-X-ray emission of the A1-A5 region allowed us to identify A1-A5 with long-sought AGN in Arp 299-A. This finding may suggest that both starburst and AGN are frequently associated phenomena in mergers. Finally, we also note that component A0, identified as a young RSN, exploded at the mere distance of two parsecs from the putative AGN in Arp 299-A, which makes this supernova one of the closest to a central supermassive black hole ever detected.
Gamma-Ray Bursts (GRBs) are fascinating events due to their panchromatic nature. Their afterglow emission is observed from sub-TeV energies to radio wavelengths. We investigate GRBs that present an optical plateau, leveraging on the resemblance with the X-ray plateau shown in many GRB light curves (LCs). We comprehensively analyze all published GRBs with known redshifts and optical plateau observed mostly by the Neil Gehrels Swift Observatory (Swift). We fit 267 optical LCs and show the existence of the plateau in 102 cases, which is the largest compilation so far of optical plateaus. For 56 Swift GRBs with optical and X-ray plateaus, we compare the rest-frame end time at both wavelengths (T*_opt , T*_X), and conclude that the plateau is achromatic between T*_opt and T*_X. We also confirm the existence of the two-dimensional relations between T*_opt and the optical luminosity at the end of the plateau emission, which resembles the same luminosity-time correlation in X-rays (Dainotti et al. 2013). The existence of this optical correlation has been demonstrated for the largest sample of optical plateaus in the literature to date. The squared scatter in this optical correlation is smallest for the subset of the Gold GRBs with a decrease in the scatter equivalent to 52.4% when compared to the scatter of the entire GRB sample.
Gravitational wave transients, resulting from the merger of two stellar remnants, are now detectable. The properties and rates of these directly relates to the stellar population which gave rise to their progenitors, and thus to other, electromagneti c transients which result from stellar death. We aim to estimate simultaneously the event rates and delay time distribution of gravitational wave-driven compact object mergers together with the rates of core collapse and thermonuclear supernovae within a single consistent stellar population synthesis paradigm. We combine event delay-time distributions at different metallicities from the Binary Population and Spectral Synthesis (BPASS) models with an analytic model of the volume-averaged cosmic star formation rate density and chemical evolution to determine the volume-averaged rates of each event rate at the current time. We estimate rates in excellent agreement with extant observational constraints on core-collapse supernovae, thermonuclear supernovae and long GRBs. We predict rates for gravitational wave mergers based on the same stellar populations, and find rates consistent with current LIGO estimates. We note that tighter constraints on the rates of these events will be required before it is possible to determine their redshift evolution, progenitor metallicity dependence or constrain uncertain aspects of stellar evolution.
Compact objects are expected to exist in the accretion disks of supermassive black holes (SMBHs) in active galactic nuclei (AGNs), and in the presence of such a dense environment ($sim 10^{14},{rm cm^{-3}}$), they will form a new kind of stellar popu lation denoted as Accretion-Modified Stars (AMSs). This hypothesis is supported by recent LIGO/Virgo detection of the mergers of very high-mass stellar binary black holes (BHs). We show that the TZOs will be trapped by the SMBH-disk within a typical AGN lifetime. In the context of SMBH-disks, the rates of Bondi accretion onto BHs are $sim 10^{9}L_{rm Edd}/c^{2}$, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is the speed of light. Outflows developed from the hyper-Eddington accretion strongly impact the Bondi sphere and induce episodic accretion. We show that the hyper-Eddington accretion will be halted after an accretion interval of $t_{rm a}sim 10^{5}m_{1},$s, where $m_{1}=m_{bullet}/10sunm$ is the BH mass. The kinetic energy of the outflows accumulated during $t_{rm a}$ is equivalent to 10 supernovae driving an explosion of the Bondi sphere and developing blast waves. We demonstrate that a synchrotron flare from relativistic electrons accelerated by the blast waves peaks in the soft X-ray band ($sim 0.1,$keV), significantly contributing to the radio, optical, UV, and soft X-ray emission of typical radio-quiet quasars. External inverse Compton scattering of the electrons peaks around $40,$GeV and is detectable through {it Fermi}-LAT. The flare, decaying with $t^{-6/5}$ with a few months, will appear as a slowly varying transient. The flares, occurring at a rate of a few per year in radio-quiet quasars, provide a new mechanism for explaining AGN variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا