ﻻ يوجد ملخص باللغة العربية
Mobile edge computing (MEC) has emerged as one of the key technical aspects of the fifth-generation (5G) networks. The integration of MEC with resource-constrained unmanned aerial vehicles (UAVs) could enable flexible resource provisioning for supporting dynamic and computation-intensive UAV applications. Existing resource trading could facilitate this paradigm with proper incentives, which, however, may often incur unexpected negotiation latency and energy consumption, trading failures and unfair pricing, due to the unpredictable nature of the resource trading process. Motivated by these challenges, an efficient futures-based resource trading mechanism for edge computing-assisted UAV network is proposed, where a mutually beneficial and risk-tolerable forward contract is devised to promote resource trading between an MEC server (seller) and a UAV (buyer). Two key problems i.e. futures contract design before trading and power optimization during trading are studied. By analyzing historical statistics associated with future resource supply, demand, and air-to-ground communication quality, the contract design is formulated as a multi-objective optimization problem, aiming to maximize both the sellers and the buyers expected utilities, while estimating their acceptable risk tolerance. Accordingly, we propose an efficient bilateral negotiation scheme to help players reach a trading consensus on the amount of resources and the relevant price. For the power optimization problem, we develop a practical algorithm that enables the buyer to determine its optimal transmission power via convex optimization techniques. Comprehensive simulations demonstrate that the proposed mechanism offers both players considerable utilities, while outperforming the onsite trading mechanism on trading failures and fairness, negotiation latency, and cost.
Mobile edge computing (MEC) has become a promising solution to utilize distributed computing resources for supporting computation-intensive vehicular applications in dynamic driving environments. To facilitate this paradigm, the onsite resource tradi
Securing necessary resources for edge computing processes via effective resource trading becomes a critical technique in supporting computation-intensive mobile applications. Conventional onsite spot trading could facilitate this paradigm with proper
Scalability and security problems of the centralized architecture models in cyberphysical systems have great potential to be solved by novel blockchain based distributed models.A decentralized energy trading system takes advantage of various sources
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudl
Recent years have witnessed a rapid proliferation of smart Internet of Things (IoT) devices. IoT devices with intelligence require the use of effective machine learning paradigms. Federated learning can be a promising solution for enabling IoT-based