ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-Efficient UAV-Assisted Mobile Edge Computing: Resource Allocation and Trajectory Optimization

161   0   0.0 ( 0 )
 نشر من قبل Mushu Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the proposed approach for maximizing the energy efficiency of UAV.



قيم البحث

اقرأ أيضاً

In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge c omputing capabilities, referred to as a mobile edge relay server (MERS). To support the computation offloading, we propose a hybrid relaying (HR) approach employing two orthogonal frequency bands, where the amplify-and-forward scheme is used in one band to exchange computational results, while the decode-and-forward scheme is used in the other band to transfer the unprocessed tasks. The motivation behind the proposed HR scheme for RACO is to adapt the allocation of computing and communication resources both to dynamic user requirements and to diverse computational tasks. Within this framework, we seek to minimize the weighted sum of the execution delay and the energy consumption in the RACO system by jointly optimizing the computation offloading ratio, the bandwidth allocation, the processor speeds, as well as the transmit power levels of both user $A$ and the MERS, under practical constraints on the available computing and communication resources. The resultant problem is formulated as a non-differentiable and nonconvex optimization program with highly coupled constraints. By adopting a series of transformations and introducing auxiliary variables, we first convert this problem into a more tractable yet equivalent form. We then develop an efficient iterative algorithm for its solution based on the concave-convex procedure. By exploiting the special structure of this problem, we also propose a simplified algorithm based on the inexact block coordinate descent method, with reduced computational complexity. Finally, we present numerical results that illustrate the advantages of the proposed algorithms over state-of-the-art benchmark schemes.
In mobile edge computing (MEC), one of the important challenges is how much resources of which mobile edge server (MES) should be allocated to which user equipment (UE). The existing resource allocation schemes only consider CPU as the requested reso urce and assume utility for MESs as either a random variable or dependent on the requested CPU only. This paper presents a novel comprehensive utility function for resource allocation in MEC. The utility function considers the heterogeneous nature of applications that a UE offloads to MES. The proposed utility function considers all important parameters, including CPU, RAM, hard disk space, required time, and distance, to calculate a more realistic utility value for MESs. Moreover, we improve upon some general algorithms, used for resource allocation in MEC and cloud computing, by considering our proposed utility function. We name the improv
While mobile edge computing (MEC) alleviates the computation and power limitations of mobile devices, additional latency is incurred when offloading tasks to remote MEC servers. In this work, the power-delay tradeoff in the context of task offloading is studied in a multi-user MEC scenario. In contrast with current system designs relying on average metrics (e.g., the average queue length and average latency), a novel network design is proposed in which latency and reliability constraints are taken into account. This is done by imposing a probabilistic constraint on users task queue lengths and invoking results from extreme value theory to characterize the occurrence of low-probability events in terms of queue length (or queuing delay) violation. The problem is formulated as a computation and transmit power minimization subject to latency and reliability constraints, and solved using tools from Lyapunov stochastic optimization. Simulation results demonstrate the effectiveness of the proposed approach, while examining the power-delay tradeoff and required computational resources for various computation intensities.
In this paper, we consider a single-cell multi-user orthogonal frequency division multiple access (OFDMA) network with one unmanned aerial vehicle (UAV), which works as an amplify-and-forward relay to improve the quality-of-service (QoS) of the user equipments (UEs) in the cell edge. Aiming to improve the throughput while guaranteeing the user fairness, we jointly optimize the communication mode, subchannel allocation, power allocation, and UAV trajectory, which is an NP-hard problem. To design the UAV trajectory and resource allocation efficiently, we first decompose the problem into three subproblems, i.e., mode selection and subchannel allocation, trajectory optimization, and power allocation, and then solve these subproblems iteratively. Simulation results show that the proposed algorithm outperforms the random algorithm and the cellular scheme.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an al ready existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا