ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism

315   0   0.0 ( 0 )
 نشر من قبل Latif U. Khan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years have witnessed a rapid proliferation of smart Internet of Things (IoT) devices. IoT devices with intelligence require the use of effective machine learning paradigms. Federated learning can be a promising solution for enabling IoT-based smart applications. In this paper, we present the primary design aspects for enabling federated learning at network edge. We model the incentive-based interaction between a global server and participating devices for federated learning via a Stackelberg game to motivate the participation of the devices in the federated learning process. We present several open research challenges with their possible solutions. Finally, we provide an outlook on future research.



قيم البحث

اقرأ أيضاً

Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients. To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients. It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients. This paper aims to propose a contract theory based FL task training model towards minimizing incentive budget subject to clients being individually rational (IR) and incentive compatible (IC) in each FL training round. We design a two-dimensional contract model by formally defining two private types of clients, namely data quality and computation effort. To effectively aggregate the trained models, a contract-based aggregator is proposed. We analyze the feasible and optimal contract solutions to the proposed contract model. %Experimental results demonstrate that the proposed framework and contract model can effective improve the generation accuracy of FL tasks. Experimental results show that the generalization accuracy of the FL tasks can be improved by the proposed incentive mechanism where contract-based aggregation is applied.
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous. This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning s cheme known as edge learning, in which model training is executed at the edge of the network. In this article, we first introduce the principles and technologies of collaborative edge learning. Then, we establish that a successful, scalable implementation of edge learning requires the communication, caching, computation, and learning resources (3C-L) of end devices and edge servers to be leveraged jointly in an efficient manner. However, users may not consent to contribute their resources without receiving adequate compensation. In consideration of the heterogeneity of edge nodes, e.g., in terms of available computation resources, we discuss the challenges of incentive mechanism design to facilitate resource sharing for edge learning. Furthermore, we present a case study involving optimal auction design using Deep Learning to price fresh data contributed for edge learning. The performance evaluation shows the revenue maximizing properties of our proposed auction over the benchmark schemes.
360 - Shuyuan Zheng , Yang Cao , 2021
Federated learning (FL) is an emerging paradigm for machine learning, in which data owners can collaboratively train a model by sharing gradients instead of their raw data. Two fundamental research problems in FL are incentive mechanism and privacy p rotection. The former focuses on how to incentivize data owners to participate in FL. The latter studies how to protect data owners privacy while maintaining high utility of trained models. However, incentive mechanism and privacy protection in FL have been studied separately and no work solves both problems at the same time. In this work, we address the two problems simultaneously by an FL-Market that incentivizes data owners participation by providing appropriate payments and privacy protection. FL-Market enables data owners to obtain compensation according to their privacy loss quantified by local differential privacy (LDP). Our insight is that, by meeting data owners personalized privacy preferences and providing appropriate payments, we can (1) incentivize privacy risk-tolerant data owners to set larger privacy parameters (i.e., gradients with less noise) and (2) provide preferred privacy protection for privacy risk-averse data owners. To achieve this, we design a personalized LDP-based FL framework with a deep learning-empowered auction mechanism for incentivizing trading gradients with less noise and optimal aggregation mechanisms for model updates. Our experiments verify the effectiveness of the proposed framework and mechanisms.
120 - Mingshu Cong , Han Yu , Xi Weng 2020
Federated learning (FL) has shown great potential for addressing the challenge of isolated data islands while preserving data privacy. It allows artificial intelligence (AI) models to be trained on locally stored data in a distributed manner. In orde r to build an ecosystem for FL to operate in a sustainable manner, it has to be economically attractive to data owners. This gives rise to the problem of FL incentive mechanism design, which aims to find the optimal organizational and payment structure for the federation in order to achieve a series of economic objectives. In this paper, we present a VCG-based FL incentive mechanism, named FVCG, specifically designed for incentivizing data owners to contribute all their data and truthfully report their costs in FL settings. It maximizes the social surplus and minimizes unfairness of the federation. We provide an implementation of FVCG with neural networks and theoretic proofs on its performance bounds. Extensive numerical experiment results demonstrated the effectiveness and economic reasonableness of FVCG.
Federated Learning (FL) is an exciting new paradigm that enables training a global model from data generated locally at the client nodes, without moving client data to a centralized server. Performance of FL in a multi-access edge computing (MEC) net work suffers from slow convergence due to heterogeneity and stochastic fluctuations in compute power and communication link qualities across clients. A recent work, Coded Federated Learning (CFL), proposes to mitigate stragglers and speed up training for linear regression tasks by assigning redundant computations at the MEC server. Coding redundancy in CFL is computed by exploiting statistical properties of compute and communication delays. We develop CodedFedL that addresses the difficult task of extending CFL to distributed non-linear regression and classification problems with multioutput labels. The key innovation of our work is to exploit distributed kernel embedding using random Fourier features that transforms the training task into distributed linear regression. We provide an analytical solution for load allocation, and demonstrate significant performance gains for CodedFedL through experiments over benchmark datasets using practical network parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا