ترغب بنشر مسار تعليمي؟ اضغط هنا

A new approach to achieving high granularity for silicon diode detectors with impact ionization gain

70   0   0.0 ( 0 )
 نشر من قبل Bruce A. Schumm
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low Gain Avalanche Diodes (LGADs) are thin (20-50 $mu m$)silicon di ode sensors with modest internal gain (typically 5 to 50) and exceptional time resolution (17 $ps$ to 50 $ps$). However, the granularity of such devices is limited to the millimeter scale due to the need to include protection structures at the boundaries of the readout pads to avoid premature breakdown due to large local electric fields. In this paper we present a new approach -- the Deep-Junction LGAD (DJ-LGAD) -- that decouples the high-field gain region from the readout plane. This approach is expected to improve the achievable LGAD granularity to the tens-of-micron scale while maintaining direct charge collection on the segmented electrodes.



قيم البحث

اقرأ أيضاً

The replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing inf ormation on electromagnetic and hadronic showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter (HGCAL) will use 120-, 200-, and 300-$mutextrm{m}$ thick silicon (Si) pad sensors as the main active material and will sustain 1-MeV neutron equivalent fluences up to about $10^{16}~textrm{n}_textrm{eq}textrm{cm}^{-2}$. In order to address the performance degradation of the Si detectors caused by the intense radiation environment, irradiation campaigns of test diode samples from 8-inch and 6-inch wafers were performed in two reactors. Characterization of the electrical and charge collection properties after irradiation involved both bulk polarities for the three sensor thicknesses. Since the Si sensors will be operated at -30 $^circ$C to reduce increasing bulk leakage current with fluence, the charge collection investigation of 30 irradiated samples was carried out with the infrared-TCT setup at -30 $^circ$C. TCAD simulation results at the lower fluences are in close agreement with the experimental results and provide predictions of sensor performance for the lower fluence regions not covered by the experimental study. All investigated sensors display 60$%$ or higher charge collection efficiency at their respective highest lifetime fluences when operated at 800 V, and display above 90$%$ at the lowest fluence, at 600 V. The collected charge close to the fluence of $10^{16}~textrm{n}_textrm{eq}textrm{cm}^{-2}$ exceeds 1 fC at voltages beyond 800 V.
A silicon-based fine granularity calorimeter is a potential technology for the future International Linear Collider ILC, the future circular collider CEPC, and is also the chosen technology for the upgraded CMS experiment of the Large Hadron Collider . Active silicon sensing pads are used as MIP counters and the standard calibration of the calorimeter uses weights based on the average energy loss, $dEdx$. In this work, the limitations of the dEdx calibration method in terms of energy linearity, scale and resolution are explored. In the case of a calorimeter with varying passive layer thickness as the one planned for CMS, the $dEdx$ method leads to a significant constant term in the resolution function and a non-linearity of energy response. For these reasons, a method based on the calorimeter sampling fraction that exploits the per-event measured shower depth is presented and shown to deliver superior absolute energy scale, linearity and resolution. Calorimetric designs in which the back of the shower is sampled less, offer reduced cost without loss in performance. Therefore, a proper calibration as proposed here is crucial in obtaining the most cost- and performance-effective silicon-sampling calorimeter design.
Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization th at is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the dead layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.
We demonstrate practically approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using newly developed Boundary Element Method called Robin Hood Method we can easily han dle objects with huge number of boundary elements (hundreds of thousands) without any compromise in numerical accuracy. In this paper we show how such calculations can be applied to Micromegas detectors by comparing electron transparencies and gains for four different types of meshes. We demonstrate inclusion of dielectric material by calculating the electric field around different types of dielectric spacers.
129 - N. Mast , A. Kennedy , H. Chagani 2018
Cryogenic semiconductor detectors operated at temperatures below 100 mK are commonly used in particle physics experiments searching for dark matter. The largest such germanium and silicon detectors, with diameters of 100 mm and thickness of 33 mm, ar e planned for use by the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at SNOLAB, Canada. In order to scale up the sensitive mass of future experiments, larger individual detectors are being investigated. We present here the first results of testing two prototype 150 mm diameter silicon ionization detectors. The detectors are 25 mm and 33 mm thick with masses 1.7 and 2.2 times larger than those currently planned for SuperCDMS. These devices were operated with contact-free bias electrodes to minimize leakage currents which currently limit operation at high bias voltages. One detector was instrumented to read out ionization signals using a single contact-free readout electrode and the other with an array of electrodes patterned on the crystal surface. The results show promise for the use of both large volume silicon detectors and contact-free electrode arrangements for scaling up solid state cryogenic detector mass and bias voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا