ﻻ يوجد ملخص باللغة العربية
Low Gain Avalanche Diodes (LGADs) are thin (20-50 $mu m$)silicon di ode sensors with modest internal gain (typically 5 to 50) and exceptional time resolution (17 $ps$ to 50 $ps$). However, the granularity of such devices is limited to the millimeter scale due to the need to include protection structures at the boundaries of the readout pads to avoid premature breakdown due to large local electric fields. In this paper we present a new approach -- the Deep-Junction LGAD (DJ-LGAD) -- that decouples the high-field gain region from the readout plane. This approach is expected to improve the achievable LGAD granularity to the tens-of-micron scale while maintaining direct charge collection on the segmented electrodes.
The replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing inf
A silicon-based fine granularity calorimeter is a potential technology for the future International Linear Collider ILC, the future circular collider CEPC, and is also the chosen technology for the upgraded CMS experiment of the Large Hadron Collider
Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization th
We demonstrate practically approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using newly developed Boundary Element Method called Robin Hood Method we can easily han
Cryogenic semiconductor detectors operated at temperatures below 100 mK are commonly used in particle physics experiments searching for dark matter. The largest such germanium and silicon detectors, with diameters of 100 mm and thickness of 33 mm, ar