ﻻ يوجد ملخص باللغة العربية
The replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing information on electromagnetic and hadronic showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter (HGCAL) will use 120-, 200-, and 300-$mutextrm{m}$ thick silicon (Si) pad sensors as the main active material and will sustain 1-MeV neutron equivalent fluences up to about $10^{16}~textrm{n}_textrm{eq}textrm{cm}^{-2}$. In order to address the performance degradation of the Si detectors caused by the intense radiation environment, irradiation campaigns of test diode samples from 8-inch and 6-inch wafers were performed in two reactors. Characterization of the electrical and charge collection properties after irradiation involved both bulk polarities for the three sensor thicknesses. Since the Si sensors will be operated at -30 $^circ$C to reduce increasing bulk leakage current with fluence, the charge collection investigation of 30 irradiated samples was carried out with the infrared-TCT setup at -30 $^circ$C. TCAD simulation results at the lower fluences are in close agreement with the experimental results and provide predictions of sensor performance for the lower fluence regions not covered by the experimental study. All investigated sensors display 60$%$ or higher charge collection efficiency at their respective highest lifetime fluences when operated at 800 V, and display above 90$%$ at the lowest fluence, at 600 V. The collected charge close to the fluence of $10^{16}~textrm{n}_textrm{eq}textrm{cm}^{-2}$ exceeds 1 fC at voltages beyond 800 V.
A silicon-based fine granularity calorimeter is a potential technology for the future International Linear Collider ILC, the future circular collider CEPC, and is also the chosen technology for the upgraded CMS experiment of the Large Hadron Collider
The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in e
A detailed study of charge collection efficiency has been performed on the Silicon Drift Detectors (SDD) of the ALICE experiment. Three different methods to study the collected charge as a function of the drift time have been implemented. The first a
A pixel detector with a CVD diamond sensor has been studied in a 180 GeV/c pion beam. The charge collection properties of the diamond sensor were studied as a function of the track position, which was measured with a silicon microstrip telescope. Non
We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trap