ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the First 150 mm Diameter Cryogenic Silicon Ionization Detectors with Contact-Free Electrodes

130   0   0.0 ( 0 )
 نشر من قبل Nicholas Mast
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cryogenic semiconductor detectors operated at temperatures below 100 mK are commonly used in particle physics experiments searching for dark matter. The largest such germanium and silicon detectors, with diameters of 100 mm and thickness of 33 mm, are planned for use by the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at SNOLAB, Canada. In order to scale up the sensitive mass of future experiments, larger individual detectors are being investigated. We present here the first results of testing two prototype 150 mm diameter silicon ionization detectors. The detectors are 25 mm and 33 mm thick with masses 1.7 and 2.2 times larger than those currently planned for SuperCDMS. These devices were operated with contact-free bias electrodes to minimize leakage currents which currently limit operation at high bias voltages. One detector was instrumented to read out ionization signals using a single contact-free readout electrode and the other with an array of electrodes patterned on the crystal surface. The results show promise for the use of both large volume silicon detectors and contact-free electrode arrangements for scaling up solid state cryogenic detector mass and bias voltage.

قيم البحث

اقرأ أيضاً

The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and in particular we demonstrate the possibility of obtaining ultra-fast silicon detector with time resolution of less than 20 picosecond.
We have developed and tested a new way of coupling bolometric light detectors to scintillating crystal bolometers based upon simply resting the light detector on the crystal surface, held in position only by gravity. This straightforward mounting res ults in three important improvements: (1) it decreases the amount of non-active materials needed to assemble the detector, (2) it substantially increases the light collection efficiency by minimizing the light losses induced by the mounting structure, and (3) it enhances the thermal signal induced in the light detector thanks to the extremely weak thermal link to the thermal bath. We tested this new technique with a 16 cm$^2$ Ge light detector with thermistor readout sitting on the surface of a large TeO$_2$ bolometer. The light collection efficiency was increased by greater than 50% compared to previously tested alternative mountings. We obtained a baseline energy resolution on the light detector of 20~eV RMS that, together with increased light collection, enabled us to obtain the best $alpha$ vs $beta/gamma$ discrimination ever obtained with massive TeO$_2$ crystals. At the same time we achieved rise and decay times of 0.8 and 1.6 ms, respectively. This superb performance meets all of the requirements for the CUPID (CUORE Upgrade with Particle IDentification) experiment, which is a 1-ton scintillating bolometer follow up to CUORE.
A silicon 3D detector with a single cell of 50x50 um2 was produced and evaluated for timing applications. The measurements of time resolution were performed for 90Sr electrons with dedicated electronics used also for determining time resolution of Lo w Gain Avalanche Detectors (LGADs). The measurements were compared to those with LGADs and also simulations. The studies showed that the dominant contribution to the timing resolution comes from the time walk originating from different induced current shapes for hits over the cell area. This contribution decreases with higher bias voltages, lower temperatures and smaller cell sizes. It is around 30 ps for a 3D detector of 50x50 um2 cell at 150 V and -20C, which is comparable to the time walk due to Landau fluctuations in LGADs. It even improves for inclined tracks and larger pads composed of multiple cells. A good agreement between measurements and simulations was obtained, thus validating the simulation results.
The paper summarizes our latest progress in the development of newly introduced micro pattern gaseous detectors with resistive electrodes. These resistive electrodes protect the detector and the front-end electronics in case of occasional discharges and thus make the detectors very robust and reliable in operation. As an example, we describe in greater detail a new recently developed GEM-like detector, fully spark-protected with electrodes made of resistive kapton. We discovered that all resistive layers used in these studies (including kapton), that are coated with photosensitive layers, such as CsI, can be used as efficient photo cathodes for detectors operating in a pulse counting mode. We describe the first applications of such detectors combined with CsI or SbCs photo cathodes for the detection of UV photons at room and cryogenic temperatures.
The EDELWEISS-II collaboration has performed a direct search for WIMP dark matter with an array of ten 400 g heat-and-ionization cryogenic detectors equipped with interleaved electrodes for the rejection of near-surface events. Six months of continuo us operation at the Laboratoire Souterrain de Modane have been achieved. The observation of one nuclear recoil candidate above 20 keV in an effective exposure of 144 kgd is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 1.0x10^-7 pb is excluded at 90%CL for a WIMP mass of 80 GeV/c2. This result demonstrates for the first time the very high background rejection capabilities of these simple and robust detectors in an actual WIMP search experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا