ﻻ يوجد ملخص باللغة العربية
Combinatorial optimization is one of the fundamental research fields that has been extensively studied in theoretical computer science and operations research. When developing an algorithm for combinatorial optimization, it is commonly assumed that parameters such as edge weights are exactly known as inputs. However, this assumption may not be fulfilled since input parameters are often uncertain or initially unknown in many applications such as recommender systems, crowdsourcing, communication networks, and online advertisement. To resolve such uncertainty, the problem of combinatorial pure exploration of multi-armed bandits (CPE) and its variants have recieved increasing attention. Earlier work on CPE has studied the semi-bandit feedback or assumed that the outcome from each individual edge is always accessible at all rounds. However, due to practical constraints such as a budget ceiling or privacy concern, such strong feedback is not always available in recent applications. In this article, we review recently proposed techniques for combinatorial pure exploration problems with limited feedback.
In this paper, we first study the problem of combinatorial pure exploration with full-bandit feedback (CPE-BL), where a learner is given a combinatorial action space $mathcal{X} subseteq {0,1}^d$, and in each round the learner pulls an action $x in m
We study the combinatorial pure exploration problem Best-Set in stochastic multi-armed bandits. In a Best-Set instance, we are given $n$ arms with unknown reward distributions, as well as a family $mathcal{F}$ of feasible subsets over the arms. Our g
In this paper, we study the Combinatorial Pure Exploration problem with the bottleneck reward function (CPE-B) under the fixed-confidence and fixed-budget settings. In CPE-B, given a set of base arms and a collection of subsets of base arms (super ar
Many real-world problems can be reduced to combinatorial optimization on a graph, where the subset or ordering of vertices that maximize some objective function must be found. With such tasks often NP-hard and analytically intractable, reinforcement
Conservative mechanism is a desirable property in decision-making problems which balance the tradeoff between the exploration and exploitation. We propose the novel emph{conservative contextual combinatorial cascading bandit ($C^4$-bandit)}, a cascad