ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploratory Combinatorial Optimization with Reinforcement Learning

100   0   0.0 ( 0 )
 نشر من قبل Thomas Barrett Dr
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many real-world problems can be reduced to combinatorial optimization on a graph, where the subset or ordering of vertices that maximize some objective function must be found. With such tasks often NP-hard and analytically intractable, reinforcement learning (RL) has shown promise as a framework with which efficient heuristic methods to tackle these problems can be learned. Previous works construct the solution subset incrementally, adding one element at a time, however, the irreversible nature of this approach prevents the agent from revising its earlier decisions, which may be necessary given the complexity of the optimization task. We instead propose that the agent should seek to continuously improve the solution by learning to explore at test time. Our approach of exploratory combinatorial optimization (ECO-DQN) is, in principle, applicable to any combinatorial problem that can be defined on a graph. Experimentally, we show our method to produce state-of-the-art RL performance on the Maximum Cut problem. Moreover, because ECO-DQN can start from any arbitrary configuration, it can be combined with other search methods to further improve performance, which we demonstrate using a simple random search.



قيم البحث

اقرأ أيضاً

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
In conventional supervised learning, a training dataset is given with ground-truth labels from a known label set, and the learned model will classify unseen instances to the known labels. In this paper, we study a new problem setting in which there a re unknown classes in the training dataset misperceived as other labels, and thus their existence appears unknown from the given supervision. We attribute the unknown unknowns to the fact that the training dataset is badly advised by the incompletely perceived label space due to the insufficient feature information. To this end, we propose the exploratory machine learning, which examines and investigates the training dataset by actively augmenting the feature space to discover potentially unknown labels. Our approach consists of three ingredients including rejection model, feature acquisition, and model cascade. The effectiveness is validated on both synthetic and real datasets.
Model-based Reinforcement Learning (MBRL) algorithms have been traditionally designed with the goal of learning accurate dynamics of the environment. This introduces a mismatch between the objectives of model-learning and the overall learning problem of finding an optimal policy. Value-aware model learning, an alternative model-learning paradigm to maximum likelihood, proposes to inform model-learning through the value function of the learnt policy. While this paradigm is theoretically sound, it does not scale beyond toy settings. In this work, we propose a novel value-aware objective that is an upper bound on the absolute performance difference of a policy across two models. Further, we propose a general purpose algorithm that modifies the standard MBRL pipeline -- enabling learning with value aware objectives. Our proposed objective, in conjunction with this algorithm, is the first successful instantiation of value-aware MBRL on challenging continuous control environments, outperforming previous value-aware objectives and with competitive performance w.r.t. MLE-based MBRL approaches.
Most reinforcement learning (RL) algorithms assume online access to the environment, in which one may readily interleave updates to the policy with experience collection using that policy. However, in many real-world applications such as health, educ ation, dialogue agents, and robotics, the cost or potential risk of deploying a new data-collection policy is high, to the point that it can become prohibitive to update the data-collection policy more than a few times during learning. With this view, we propose a novel concept of deployment efficiency, measuring the number of distinct data-collection policies that are used during policy learning. We observe that na{i}vely applying existing model-free offline RL algorithms recursively does not lead to a practical deployment-efficient and sample-efficient algorithm. We propose a novel model-based algorithm, Behavior-Regularized Model-ENsemble (BREMEN) that can effectively optimize a policy offline using 10-20 times fewer data than prior works. Furthermore, the recursive application of BREMEN is able to achieve impressive deployment efficiency while maintaining the same or better sample efficiency, learning successful policies from scratch on simulated robotic environments with only 5-10 deployments, compared to typical values of hundreds to millions in standard RL baselines. Codes and pre-trained models are available at https://github.com/matsuolab/BREMEN .
We study episodic reinforcement learning in Markov decision processes when the agent receives additional feedback per step in the form of several transition observations. Such additional observations are available in a range of tasks through extended sensors or prior knowledge about the environment (e.g., when certain actions yield similar outcome). We formalize this setting using a feedback graph over state-action pairs and show that model-based algorithms can leverage the additional feedback for more sample-efficient learning. We give a regret bound that, ignoring logarithmic factors and lower-order terms, depends only on the size of the maximum acyclic subgraph of the feedback graph, in contrast with a polynomial dependency on the number of states and actions in the absence of a feedback graph. Finally, we highlight challenges when leveraging a small dominating set of the feedback graph as compared to the bandit setting and propose a new algorithm that can use knowledge of such a dominating set for more sample-efficient learning of a near-optimal policy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا