ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Urban Spreading Pattern of COVID-19 and Its Underlying Mechanism

120   0   0.0 ( 0 )
 نشر من قبل Hongshen Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical measures. Previous studies investigated such an issue in large-scale (e.g., inter-country or inter-state) scenarios while urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in 9 cities in China. We find a universal spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid is time-invariant. Moreover, we reveal that human mobility in a city drives the spatialtemporal spreading process: long average travelling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases. With such insight, we adopt Kendall model to simulate urban spreading of COVID-19 that can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.



قيم البحث

اقرأ أيضاً

The ongoing COVID-19 pandemic has created a global crisis of massive scale. Prior research indicates that human mobility is one of the key factors involved in viral spreading. Indeed, in a connected planet, rapid world-wide spread is enabled by long- distance air-, land- and sea-transportation among countries and continents, and subsequently fostered by commuting trips within densely populated cities. While early travel restrictions contribute to delayed disease spread, their utility is much reduced if the disease has a long incubation period or if there is asymptomatic transmission. Given the lack of vaccines, public health officials have mainly relied on non-pharmaceutical interventions, including social distancing measures, curfews, and stay-at-home orders. Here we study the impact of city organization on its susceptibility to disease spread, and amenability to interventions. Cities can be classified according to their mobility in a spectrum between compact-hierarchical and decentralized-sprawled. Our results show that even though hierarchical cities are more susceptible to the rapid spread of epidemics, their organization makes mobility restrictions quite effective. Conversely, sprawled cities are characterized by a much slower initial spread, but are less responsive to mobility restrictions. These findings hold globally across cities in diverse geographical locations and a broad range of sizes. Our empirical measurements are confirmed by a simulation of COVID-19 spread in urban areas through a compartmental model. These results suggest that investing resources on early monitoring and prompt ad-hoc interventions in more vulnerable cities may prove most helpful in containing and reducing the impact of present and future pandemics.
The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economi c activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.
Improved mobility not only contributes to more intensive human activities but also facilitates the spread of communicable disease, thus constituting a major threat to billions of urban commuters. In this study, we present a multi-city investigation o f communicable diseases percolating among metro travelers. We use smart card data from three megacities in China to construct individual-level contact networks, based on which the spread of disease is modeled and studied. We observe that, though differing in urban forms, network layouts, and mobility patterns, the metro systems of the three cities share similar contact network structures. This motivates us to develop a universal generation model that captures the distributions of the number of contacts as well as the contact duration among individual travelers. This model explains how the structural properties of the metro contact network are associated with the risk level of communicable diseases. Our results highlight the vulnerability of urban mass transit systems during disease outbreaks and suggest important planning and operation strategies for mitigating the risk of communicable diseases.
Using the official data and aware of the uncertain source and insufficient number of samples, we present a first and (for the moment) unique attempt to study the first two months spread of COVID-19 in Madagascar. The approach has been tested by predi cting the number of contaminated persons for the next week after fitting the inputs data collected within 7 or 15 days using standard least $chi^2$-fit method. Encouraged by this first test, we study systematically during 67 days , 1-2 weeks new data and predict the contaminated persons for the coming week. We find that the first month data are well described by a linear or quadratic polynomial with an increase of about (4-5) infected persons per day. Pursuing the analysis, one note that data until 46 days favour a cubic polynomial behaviour which signals an eventual near future stronger growth as confirmed by the new data on the 48th day. We complete the analysis until 67 days and find that the data until 77 days confirm the cubic polynomial behaviour which is a remarkable feature of the pandemic spread in Madagascar. We expect that these results will be useful for some new model buildings. A comparison with some other SI-like models predictions is done.These results may also be interpreted as the lowest values of the real case due to the insufficient number of samples (12907 for 27 million habitants on 05/06/20). The data analysis of the absolute number of cured persons until 67 days shows an approximate linear behaviour with about 3 cured persons per day. However, the number of percentage number of cured persons decreases above 42-46 days indicating the limits of the hospital equipment and care to face the 2nd phase of the pandemic for the 67th first days. Some comments on the social, economical and political impacts of COVID-19 and confinement for Madagascar and, in general, for Worldwide are shortly discussed.
From the moment the first COVID-19 vaccines are rolled out, there will need to be a large fraction of the global population ready in line. It is therefore crucial to start managing the growing global hesitancy to any such COVID-19 vaccine. The curren t approach of trying to convince the nos cannot work quickly enough, nor can the current policy of trying to find, remove and/or rebut all the individual pieces of COVID and vaccine misinformation. Instead, we show how this can be done in a simpler way by moving away from chasing misinformation content and focusing instead on managing the yes--no--not-sure hesitancy ecosystem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا