ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Months of COVID-19 in Madagascar

331   0   0.0 ( 0 )
 نشر من قبل Stephan Narison
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the official data and aware of the uncertain source and insufficient number of samples, we present a first and (for the moment) unique attempt to study the first two months spread of COVID-19 in Madagascar. The approach has been tested by predicting the number of contaminated persons for the next week after fitting the inputs data collected within 7 or 15 days using standard least $chi^2$-fit method. Encouraged by this first test, we study systematically during 67 days , 1-2 weeks new data and predict the contaminated persons for the coming week. We find that the first month data are well described by a linear or quadratic polynomial with an increase of about (4-5) infected persons per day. Pursuing the analysis, one note that data until 46 days favour a cubic polynomial behaviour which signals an eventual near future stronger growth as confirmed by the new data on the 48th day. We complete the analysis until 67 days and find that the data until 77 days confirm the cubic polynomial behaviour which is a remarkable feature of the pandemic spread in Madagascar. We expect that these results will be useful for some new model buildings. A comparison with some other SI-like models predictions is done.These results may also be interpreted as the lowest values of the real case due to the insufficient number of samples (12907 for 27 million habitants on 05/06/20). The data analysis of the absolute number of cured persons until 67 days shows an approximate linear behaviour with about 3 cured persons per day. However, the number of percentage number of cured persons decreases above 42-46 days indicating the limits of the hospital equipment and care to face the 2nd phase of the pandemic for the 67th first days. Some comments on the social, economical and political impacts of COVID-19 and confinement for Madagascar and, in general, for Worldwide are shortly discussed.



قيم البحث

اقرأ أيضاً

From the moment the first COVID-19 vaccines are rolled out, there will need to be a large fraction of the global population ready in line. It is therefore crucial to start managing the growing global hesitancy to any such COVID-19 vaccine. The curren t approach of trying to convince the nos cannot work quickly enough, nor can the current policy of trying to find, remove and/or rebut all the individual pieces of COVID and vaccine misinformation. Instead, we show how this can be done in a simpler way by moving away from chasing misinformation content and focusing instead on managing the yes--no--not-sure hesitancy ecosystem.
82 - Nicola Perra 2020
Infectious diseases and human behavior are intertwined. On one side, our movements and interactions are the engines of transmission. On the other, the unfolding of viruses might induce changes to our daily activities. While intuitive, our understandi ng of such feedback loop is still limited. Before COVID-19 the literature on the subject was mainly theoretical and largely missed validation. The main issue was the lack of empirical data capturing behavioral change induced by diseases. Things have dramatically changed in 2020. Non-pharmaceutical interventions (NPIs) have been the key weapon against the SARS-CoV-2 virus and affected virtually any societal process. Travels bans, events cancellation, social distancing, curfews, and lockdowns have become unfortunately very familiar. The scale of the emergency, the ease of survey as well as crowdsourcing deployment guaranteed by the latest technology, several Data for Good programs developed by tech giants, major mobile phone providers, and other companies have allowed unprecedented access to data describing behavioral changes induced by the pandemic. Here, I aim to review some of the vast literature written on the subject of NPIs during the COVID-19 pandemic. In doing so, I analyze 347 articles written by more than 2518 of authors in the last $12$ months. While the large majority of the sample was obtained by querying PubMed, it includes also a hand-curated list. Considering the focus, and methodology I have classified the sample into seven main categories: epidemic models, surveys, comments/perspectives, papers aiming to quantify the effects of NPIs, reviews, articles using data proxies to measure NPIs, and publicly available datasets describing NPIs. I summarize the methodology, data used, findings of the articles in each category and provide an outlook highlighting future challenges as well as opportunities
Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical m easures. Previous studies investigated such an issue in large-scale (e.g., inter-country or inter-state) scenarios while urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in 9 cities in China. We find a universal spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid is time-invariant. Moreover, we reveal that human mobility in a city drives the spatialtemporal spreading process: long average travelling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases. With such insight, we adopt Kendall model to simulate urban spreading of COVID-19 that can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.
As the COVID-19 pandemic continues to ravage the world, it is of critical significance to provide a timely risk prediction of the COVID-19 in multi-level. To implement it and evaluate the public health policies, we develop a framework with machine le arning assisted to extract epidemic dynamics from the infection data, in which contains a county-level spatiotemporal epidemiological model that combines a spatial Cellular Automaton (CA) with a temporal Susceptible-Undiagnosed-Infected-Removed (SUIR) model. Compared with the existing time risk prediction models, the proposed CA-SUIR model shows the multi-level risk of the county to the government and coronavirus transmission patterns under different policies. This new toolbox is first utilized to the projection of the multi-level COVID-19 prevalence over 412 Landkreis (counties) in Germany, including t-day-ahead risk forecast and the risk assessment to the travel restriction policy. As a practical illustration, we predict the situation at Christmas where the worst fatalities are 34.5 thousand, effective policies could contain it to below 21 thousand. Such intervenable evaluation system could help decide on economic restarting and public health policies making in pandemic.
Having accurate and timely data on confirmed active COVID-19 cases is challenging, since it depends on testing capacity and the availability of an appropriate infrastructure to perform tests and aggregate their results. In this paper, we propose meth ods to estimate the number of active cases of COVID-19 from the official data (of confirmed cases and fatalities) and from survey data. We show that the latter is a viable option in countries with reduced testing capacity or suboptimal infrastructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا