ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure effect on the topologically nontrivial electronic state and transport of lutecium monobismuthide

53   0   0.0 ( 0 )
 نشر من قبل Y. Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rare-earth monopnictides are predicted to be nontrivial semimetal candidates and show pressure-induced superconductivity. Here, we grow LuBi single crystal and study the magnetization, transport behaviors and electronic band structures to reveal its topological semimetal feature and superconductivity under pressure. At 0 GPa, the quantum oscillations indicate that there are several topologically nontrivial carrier pockets around the Fermi level, among which the hole ones are isotropic in shape, while the electron ones are anisotropic and responsible for the angular magnetoresistance. Upon compression, the superconductivity emerges in the titled compound, showing a similar pressure dependence as that observed in LaBi. Our calculation suggests that the electronic band structures are robust at low- and high-pressure respectively and thus the topological features are always preserved. Besides, the nearly pressure-independent density of state in LuBi indicates that the conventional electron-phonon coupling appears to play a minor role in the superconductivity.



قيم البحث

اقرأ أيضاً

Using high-resolution angle-resolved photoemission spectroscopy, the electronic structure near the Fermi level and the topological property of the Bi(111) films grown on the Bi$_2$Te$_3$(111) substrate were studied. Very different from the bulk Bi, w e found another surface band near the $bar{M}$ point besides the two well-known surface bands on the Bi(111) surface. With this new surface band, the bulk valence band and the bulk conduction band of Bi can be connected by the surface states. Our band mapping revealed odd number of Fermi crossings of the surface bands, which provided a direct experimental signature that Bi(111) thin films of a certain thickness on the Bi$_2$Te$_3$(111) substrate can be topologically nontrivial in three dimension.
The intriguing properties, especially Dirac physics in graphene, have inspired the pursuit of two-dimensional materials in honeycomb structure. Here we achieved a monolayer transition metal monochalcogenide AgTe on Ag(111) by tellurization of the sub strate. High-resolution scanning tunneling microscopy, combined with low-energy electron diffraction, angle-resolved photoemission spectroscopy, and density functional theory calculations, demonstrates the planar honeycomb structure of AgTe. The first principle calculations further reveal that, protected by the in-plane mirror reflection symmetry, two Dirac node-line Fermions exist in the electronic structures of free-standing AgTe when spin-orbit coupling (SOC) is ignored. While in fact the SOC leads to the gap opening, and resulting in the emergence of the topologically nontrivial quantum spin Hall edge state. Importantly, our experiments evidence the chemical stability of the monolayer AgTe in ambient conditions. It is possible to study AgTe by more ex-situ measurements and even to apply it in novel electronic devices.
74 - Y. Fang , F. Tang , Y. R. Ruan 2020
Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compound s are proposed to host intriguing topological nature, among which the electronic properties of CeSb are still under debate. In this paper, we report a comprehensive study combining magnetic and electronic transport measurements, and electronic band structure calculations of this compound to identify its topological nature. Quantum oscillations are clearly observed in both magnetization and magnetoresistance at high fields, from which one pocket with a nontrivial Berry phase is recognized. Angular-dependent magnetoresistance shows that this pocket is elongated in nature and corresponds to the electron pocket as observed in LaBi. Nontrivial electronic structure of CeSb is further confirmed by first-principle calculations, which arises from spin splitting in the fully polarized ferromagnetic state. These features indicate that magnetic-field can induce nontrivial topological electronic states in this prototypical Kondo semimetal.
Stanene has been predicted to be a two-dimensional topological insulator (2DTI). Its low-buckled atomic geometry and the enhanced spin-orbit coupling are expected to cause a prominent quantum spin hall (QSH) effect. However, most of the experimentall y grown stanene to date displays a metallic state without a real gap, possibly due to the chemical coupling with the substrate and the stress applied by the substrate. Here,we demonstrate an efficient way of tuning the atomic buckling in stanene to open a topologically nontrivial energy gap. Via tuning the growth kinetics, we obtain not only the low-buckled 1x1 stanene but also an unexpected high-buckled R3xR3 stanene on the Bi(111) substrate. Scanning tunneling microscopy (STM) study combined with density functional theory (DFT) calculation confirms that the R3xR3 stanene is a distorted 1x1 structure with a high-buckled Sn in every three 1x1 unit cells. The high-buckled R3xR3 stanene favors a large band inversion at the {Gamma} point, and the spin orbital coupling open a topologically nontrivial energy gap. The existence of edge states as verified in both STM measurement and DFT calculation further confirms the topology of the R3xR3 stanene. This study provides an alternate way to tune the topology of monolayer 2DTI materials.
In this work, the structural and transport properties of (Nd0.7-xLax)Sr0.3MnO3 manganites with x = 0, 0.1 and 0.2 prepared by solid state reaction route are studied. These compounds are found to be crystallized in orthorhombic structural form. The in fluence of La substitution in place of Nd at A-site shifts the metal to semiconductor/insulator transition temperature (TMI) peak towards room temperature with x = 0, 0.1 and 0.2. A composition prepared with the value of x = 0.2 in (Nd0.7-xLax)0.7Sr0.3MnO3 manganites (i.e. (Nd0.5La0.2)0.7Sr0.3MnO3), TMI was observed at 289 K which is close to room temperature. The maximum percentage of TCR values of compounds are increasing with average radius <r_A> but %TCR are slightly equal in x = 0.1 and 0.2 as compared to the parent compound. The maximum %TCR value is almost independent with A-site average radius <r_A> in x = 0.1 and 0.2. The electrical resistivity data are explored by different theoretical models and it has been concluded that at low temperature (ferromagnetic metallic region) conduction mechanism presumably due to the combined effect of electron-electron, electron-phonon and electron-magnon scattering, while in paramagnetic semiconducting regime, the variation of resistivity with temperature are explained by (1) Mott variable range hopping mechanism, (2) Adiabatic small polaron hopping and (3) Thermally activated hopping. The polaron hopping and thermal activation energies are decreasing with increase of an average A-site ionic radius (<rA>). An appropriate enlightenment for the observed behavior is discussed in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا