ﻻ يوجد ملخص باللغة العربية
Rare-earth monopnictides are predicted to be nontrivial semimetal candidates and show pressure-induced superconductivity. Here, we grow LuBi single crystal and study the magnetization, transport behaviors and electronic band structures to reveal its topological semimetal feature and superconductivity under pressure. At 0 GPa, the quantum oscillations indicate that there are several topologically nontrivial carrier pockets around the Fermi level, among which the hole ones are isotropic in shape, while the electron ones are anisotropic and responsible for the angular magnetoresistance. Upon compression, the superconductivity emerges in the titled compound, showing a similar pressure dependence as that observed in LaBi. Our calculation suggests that the electronic band structures are robust at low- and high-pressure respectively and thus the topological features are always preserved. Besides, the nearly pressure-independent density of state in LuBi indicates that the conventional electron-phonon coupling appears to play a minor role in the superconductivity.
Using high-resolution angle-resolved photoemission spectroscopy, the electronic structure near the Fermi level and the topological property of the Bi(111) films grown on the Bi$_2$Te$_3$(111) substrate were studied. Very different from the bulk Bi, w
The intriguing properties, especially Dirac physics in graphene, have inspired the pursuit of two-dimensional materials in honeycomb structure. Here we achieved a monolayer transition metal monochalcogenide AgTe on Ag(111) by tellurization of the sub
Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compound
Stanene has been predicted to be a two-dimensional topological insulator (2DTI). Its low-buckled atomic geometry and the enhanced spin-orbit coupling are expected to cause a prominent quantum spin hall (QSH) effect. However, most of the experimentall
In this work, the structural and transport properties of (Nd0.7-xLax)Sr0.3MnO3 manganites with x = 0, 0.1 and 0.2 prepared by solid state reaction route are studied. These compounds are found to be crystallized in orthorhombic structural form. The in