ﻻ يوجد ملخص باللغة العربية
Stanene has been predicted to be a two-dimensional topological insulator (2DTI). Its low-buckled atomic geometry and the enhanced spin-orbit coupling are expected to cause a prominent quantum spin hall (QSH) effect. However, most of the experimentally grown stanene to date displays a metallic state without a real gap, possibly due to the chemical coupling with the substrate and the stress applied by the substrate. Here,we demonstrate an efficient way of tuning the atomic buckling in stanene to open a topologically nontrivial energy gap. Via tuning the growth kinetics, we obtain not only the low-buckled 1x1 stanene but also an unexpected high-buckled R3xR3 stanene on the Bi(111) substrate. Scanning tunneling microscopy (STM) study combined with density functional theory (DFT) calculation confirms that the R3xR3 stanene is a distorted 1x1 structure with a high-buckled Sn in every three 1x1 unit cells. The high-buckled R3xR3 stanene favors a large band inversion at the {Gamma} point, and the spin orbital coupling open a topologically nontrivial energy gap. The existence of edge states as verified in both STM measurement and DFT calculation further confirms the topology of the R3xR3 stanene. This study provides an alternate way to tune the topology of monolayer 2DTI materials.
The intriguing properties, especially Dirac physics in graphene, have inspired the pursuit of two-dimensional materials in honeycomb structure. Here we achieved a monolayer transition metal monochalcogenide AgTe on Ag(111) by tellurization of the sub
Using high-resolution angle-resolved photoemission spectroscopy, the electronic structure near the Fermi level and the topological property of the Bi(111) films grown on the Bi$_2$Te$_3$(111) substrate were studied. Very different from the bulk Bi, w
In many realistic topological materials, more than one kind of fermions contribute to the electronic bands crossing the Fermi level, leading to various novel phenomena. Here, using momentum-resolved inelastic electron scattering, we investigate the p
Combining tight-binding (TB) models with first-principles calculations, we investigate electronic and topological properties of plumbene. Different from the other two-dimensional (2D) topologically nontrivial insulators in group IVA (from graphene to
Rare-earth monopnictides are predicted to be nontrivial semimetal candidates and show pressure-induced superconductivity. Here, we grow LuBi single crystal and study the magnetization, transport behaviors and electronic band structures to reveal its