ﻻ يوجد ملخص باللغة العربية
This paper explores the behavior of present-biased agents, that is, agents who erroneously anticipate the costs of future actions compared to their real costs. Specifically, the paper extends the original framework proposed by Akerlof (1991) for studying various aspects of human behavior related to time-inconsistent planning, including procrastination, and abandonment, as well as the elegant graph-theoretic model encapsulating this framework recently proposed by Kleinberg and Oren (2014). The benefit of this extension is twofold. First, it enables to perform fine grained analysis of the behavior of present-biased agents depending on the optimisation task they have to perform. In particular, we study covering tasks vs. hitting tasks, and show that the ratio between the cost of the solutions computed by present-biased agents and the cost of the optimal solutions may differ significantly depending on the problem constraints. Second, our extension enables to study not only underestimation of future costs, coupled with minimization problems, but also all combinations of minimization/maximization, and underestimation/overestimation. We study the four scenarios, and we establish upper bounds on the cost ratio for three of them (the cost ratio for the original scenario was known to be unbounded), providing a complete global picture of the behavior of present-biased agents, as far as optimisation tasks are concerned.
Conditional Stochastic Optimization (CSO) covers a variety of applications ranging from meta-learning and causal inference to invariant learning. However, constructing unbiased gradient estimates in CSO is challenging due to the composition structure
This paper addresses consensus optimization problems in a multi-agent network, where all agents collaboratively find a minimizer for the sum of their private functions. We develop a new decentralized algorithm in which each agent communicates only wi
Communication compression techniques are of growing interests for solving the decentralized optimization problem under limited communication, where the global objective is to minimize the average of local cost functions over a multi-agent network usi
This paper considers decentralized minimization of $N:=nm$ smooth non-convex cost functions equally divided over a directed network of $n$ nodes. Specifically, we describe a stochastic first-order gradient method, called GT-SARAH, that employs a SARA
In this paper, we study decentralized online stochastic non-convex optimization over a network of nodes. Integrating a technique called gradient tracking in decentralized stochastic gradient descent, we show that the resulting algorithm, GT-DSGD, enj