ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic magneto-thermal transport in Co$_2$MnGa thin films

137   0   0.0 ( 0 )
 نشر من قبل Karel V\\'yborn\\'y
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferromagnetic Co$_2$MnGa has recently attracted significant attention due to effects related to non-trivial topology of its band structure, however a systematic study of canonical magneto-galvanic transport effects is missing. Focusing on high quality thin films, here we systematically measure anisotropic magnetoresistance (AMR) and its thermoelectric counterpart (AMTP). We model the AMR data by free energy minimisation within the Stoner-Wohlfarth formalism and conclude that both crystalline and non-crystalline components of this magneto-transport phenomenon are present in Co$_2$MnGa. Unlike the AMR which is small in relative terms, the AMTP is large due to a change of sign of the Seebeck coefficient as a function of temperature. This fact is discussed in the context of the Mott rule and further analysis of AMTP components is presented.



قيم البحث

اقرأ أيضاً

Topological magnetic semimetals promise large Berry curvature through the distribution of the topological Weyl nodes or nodal lines and further novel physics with exotic transport phenomena. We present a systematic study of the structural and magneto transport properties of Co$_2$MnGa films from thin (20 nm) to bulk like behavior (80 nm), in order to understand the underlying mechanisms and the role on the topology. The magnetron sputtered Co$_2$MnGa films are $L$$2_{mathrm {1}}$-ordered showing very good heteroepitaxy and a strain-induced tetragonal distortion. The anomalous Hall conductivity was found to be maximum at a value of 1138 S/cm, with a corresponding anomalous Hall angle of 13 %, which is comparatively larger than topologically trivial metals. There is a good agreement between the theoretical calculations and the Hall conductivity observed for the 80 nm film, which suggest that the effect is intrinsic. Thus, the Co$_2$MnGa compound manifests as a promising material towards topologically-driven spintronic applications.
We present a study of the of thermal transport in thin single crystals of iron-intercalated titanium disulphide, Fe$_{x}$TiS$_2$ for $0leq x leq 0.20$. We determine the distribution of intercalants using high-resolution crystallographic and magnetic measurements, confirming the insertion of Fe without long-range ordering. We find that iron intercalation perturbs the lattice very little, and suppresses the tendency of TiS$_2$ to self-intercalate with excess Ti. We observe trends in the thermal conductivity that are compatible with our ab initio calculations of thermal transport in perfectly stoichiometric TiS$_2$.
108 - Ruofan Li , Peng Li , Di Yi 2021
We report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite $mathrm{MgAl_{0.5}Fe_{1.5}O_4}$ (MAFO), which has a substantial in-plane four-fold magnetic anisotropy. We observe spin diffusion lengths $> 0.8$ $mathrm{ mu m}$ at room temperature in 6 nm films, with spin diffusion length 30% longer along the easy axes compared to the hard axes. The sign of this difference is opposite to the effects just of anisotropy in the magnetic energy for a uniform magnetic state. We suggest instead that accounting for anisotropy in exchange stiffness is necessary to explain these results.
We studied the symmetry of magnetic properties and the resulting magnetic textures in ultra-thin epitaxial Au$_{0.67}$Pt$_{0.33}$/Co/W, a model system exhibiting perpendicular magnetic anisotropy and interface Dzyaloshinskii-Moriya interaction (DMI). As a peculiar feature, the C$_mathrm{2v}$ crystal symmetry induced by the Co/W interface results in an additional uniaxial in-plane magnetic anisotropy in the cobalt layer. Photoemission electron microscopy with magnetic sensitivity reveals the formation of self-organized magnetic stripe domains oriented parallel to the hard in-plane magnetization axis. We attribute this behavior to the lower domain wall energy when oriented along this axis, where both the DMI and the in-plane magnetic anisotropy favor a N{e}el domain wall configuration. The anisotropic domain wall energy also leads to the formation of elliptical skyrmion bubbles in a weak out-of-plane magnetic field.
We report the deposition of thin Co$_2$FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L2$_1$ ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al$_2$O$_3$(110) show several epitaxial domai ns in the film plane. Investigation of the magnetic properties reveals a saturation magnetization of 5.0 $mu_B/f.u.$ at low temperatures. The temperature dependence of the resistivity $rho_{xx}(T)$ exhibits a crossover from a T^3.5 law at T<50K to a T^1.65 behaviour at elevated temperatures. $rho_{xx}(H)$ shows a small anisotropic magnetoresistive effect. A weak dependence of the normal Hall effect on the external magnetic field indicates the compensation of electron and hole like contributions at the Fermi surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا