ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic thermal transport in magnetic intercalates Fe$_{x}$TiS$_2$

99   0   0.0 ( 0 )
 نشر من قبل Ramzy Daou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the of thermal transport in thin single crystals of iron-intercalated titanium disulphide, Fe$_{x}$TiS$_2$ for $0leq x leq 0.20$. We determine the distribution of intercalants using high-resolution crystallographic and magnetic measurements, confirming the insertion of Fe without long-range ordering. We find that iron intercalation perturbs the lattice very little, and suppresses the tendency of TiS$_2$ to self-intercalate with excess Ti. We observe trends in the thermal conductivity that are compatible with our ab initio calculations of thermal transport in perfectly stoichiometric TiS$_2$.



قيم البحث

اقرأ أيضاً

Titanium disulfide TiS$_2$, which is a member of the layered transition-metal dichalcogenides with the 1T-CdI$_2$-type crystal structure, is known to exhibit a wide variety of magnetism through intercalating various kinds of transition-metal atoms of different concentrations. Among them, Fe-intercalated titanium disulfide Fe$_x$TiS$_2$ is known to be ferromagnetic with strong perpendicular magnetic anisotropy (PMA) and large coercive fields ($H_text{c}$). In order to study the microscopic origin of the magnetism of this compound, we have performed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements on single crystals of heavily intercalated Fe$_x$TiS$_2$ ($xsim0.5$). The grown single crystals showed a strong PMA with a large $H_text{c}$ of $mu_0H_text{c} simeq 1.0 text{T}$. XAS and XMCD spectra showed that Fe is fully in the valence states of 2+ and that Ti is in an itinerant electronic state, indicating electron transfer from the intercalated Fe atoms to the host TiS$_2$ bands. The Fe$^{2+}$ ions were shown to have a large orbital magnetic moment of $simeq 0.59 mu_text{B}text{/Fe}$, to which, combined with the spin-orbit interaction and the trigonal crystal field, we attribute the strong magnetic anisotropy of Fe$_x$TiS$_2$.
The promising thermoelectric material TiS$_2$ can be easily chemically doped and intercalated. We present here studies of single crystals that are intercalated with excess Ti or Co, or substituted with Ta. We demonstrate the intrinsic impact of these dopants on the thermal transport in the absence of grain boundary scattering. We show that Ta doping has the greatest impact on the thermal scattering rate per ion added, leading to a five-fold reduction in the lattice thermal conductivity as compared to stoichiometric single crystals.
Ferromagnetic Co$_2$MnGa has recently attracted significant attention due to effects related to non-trivial topology of its band structure, however a systematic study of canonical magneto-galvanic transport effects is missing. Focusing on high qualit y thin films, here we systematically measure anisotropic magnetoresistance (AMR) and its thermoelectric counterpart (AMTP). We model the AMR data by free energy minimisation within the Stoner-Wohlfarth formalism and conclude that both crystalline and non-crystalline components of this magneto-transport phenomenon are present in Co$_2$MnGa. Unlike the AMR which is small in relative terms, the AMTP is large due to a change of sign of the Seebeck coefficient as a function of temperature. This fact is discussed in the context of the Mott rule and further analysis of AMTP components is presented.
Nanostructured permanent magnets are gaining increasing interest and importance for applications such as generators and motors. Thermal management is a key concern since performance of permanent magnets decreases with temperature. We investigated the magnetic and thermal transport properties of rare-earth free nanostructured SrFe12O19 magnets produced by the current activated pressure assisted densification. The synthesized magnets have aligned grains such that their magnetic easy axis is perpendicular to their largest surface area to maximize their magnetic performance. The SrFe12O19 magnets have fine grain sizes in the cross-plane direction and substantially larger grain sizes in the in-plane direction. It was found that this microstructure results in approximately a factor of two higher thermal conductivity in the in-plane direction, providing an opportunity for effective cooling. The phonons are the dominant heat carriers in this type of permanent magnets near room temperature. Temperature and direction dependent thermal conductivity measurements indicate that both Umklapp and grain boundary scattering are important in the in-plane direction, where the characteristic grain size is relatively large, while grain boundary scattering dominates the cross-plane thermal transport. The investigated nano/microstructural design strategy should translate well to other material systems and thus have important implications for thermal management of nanostructured permanent magnets.
Black phosphorus (BP) has emerged as a promising candidate for next generation electronics and optoelectronics among the 2D family materials due to its extraordinary electrical/optical/optoelectronic properties. Interestingly, BP shows strong anisotr opic transport behaviour because of its puckered honeycomb structure. Previous studies have demonstrated the thermal transport anisotropy of BP and theoretically attribute this to the anisotropy in both phonon dispersion relation and phonon relaxation time. However, the exact origin of such strong anisotropy lacks clarity and has yet to be proven experimentally. In this work, we probe the thermal transport anisotropy of BP nanoribbons (NRs) by an electron beam technique. We provide direct evidence that the origin of this anisotropy is dominated by the anisotropic phonon group velocity for the first time, verified by Young modulus measurements along different directions. It turns out that the ratio of thermal conductivity between zigzag (ZZ) and armchair (AC) ribbons is almost same as that of the corresponding Young modulus values. The results from first-principles calculation are consistent with this experimental observation, where anisotropic phonon group velocity between ZZ and AC is shown. Our results provide fundamental insight into the anisotropic thermal transport in low symmetric crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا