ترغب بنشر مسار تعليمي؟ اضغط هنا

Bethe/Gauge Correspondence for SO/Sp Gauge Theories and Open Spin Chains

134   0   0.0 ( 0 )
 نشر من قبل Nick R.D. Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we extend the work of arXiv:0901.4744 to a Bethe/Gauge correspondence between 2d (or resp. 3d) SO/Sp gauge theories and open XXX (resp. XXZ) spin chains with diagonal boundary conditions. The case of linear quiver gauge theories is also considered.

قيم البحث

اقرأ أيضاً

108 - Omar Foda , Masahide Manabe 2019
In [1, 2], Nekrasov applied the Bethe/gauge correspondence to derive the $mathfrak{su}, (2)$ XXX spin-chain coordinate Bethe wavefunction from the IR limit of a 2D $mathcal{N}=(2, 2)$ supersymmetric $A_1$ quiver gauge theory with an orbifold-type cod imension-2 defect. Later, Bullimore, Kim and Lukowski implemented Nekrasovs construction at the level of the UV $A_1$ quiver gauge theory, recovered his result, and obtained further extensions of the Bethe/gauge correspondence [3]. In this work, we extend the construction of the defect to $A_M$ quiver gauge theories to obtain the $mathfrak{su} , ( M + 1 )$ XXX spin-chain nested coordinate Bethe wavefunctions. The extension to XXZ spin-chain is straightforward. Further, we apply a Higgsing procedure to obtain more general $A_M$ quivers and the corresponding wavefunctions, and interpret this procedure (and the Hanany-Witten moves that it involves) on the spin-chain side in terms of Izergin-Korepin-type specializations (and re-assignments) of the parameters of the coordinate Bethe wavefunctions.
We discuss electric-magnetic duality in two new classes of supersymmetric Yang-Mills theories. The models have gauge group $Sp(2 c)$ or $SO( c)$ with matter in both the adjoint and defining representations. By perturbing these theories with various s uperpotentials, we find a variety of new infrared fixed points with dual descriptions. This work is complementary to that of Kutasov and Schwimmer on $SU( c)$ and of Intriligator on other models involving $Sp(2 c)$ and $SO( c)$.
We compute the ${cal N}=2$ supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kahler form with jumps along the wal ls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $mathbb{C}^2$. The evaluation of these residues is greatly simplified by using an abstruse duality that relates the residues at the poles of the one-loop and instanton parts of the $mathbb{C}^2$ partition function. As particular cases, our formulae compute the $SU(2)$ and $SU(3)$ {it equivariant} Donaldson invariants of $mathbb{P}^2$ and $mathbb{F}_n$ and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the $SU(2)$ case. Finally, we show that the $U(1)$ self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $mathcal{N}=2$ analog of the $mathcal{N}=4$ holomorphic anomaly equations.
We study, using ADHM construction, instanton effects in an ${CN}=2$ superconformal $Sp(N)$ gauge theory, arising as effective field theory on a system of $N$ D-3-branes near an orientifold 7-plane and 8 D-7-branes in type I string theory. We work out the measure for the collective coordinates of multi-instantons in the gauge theory and compare with the measure for the collective coordinates of $(-1)$-branes in the presence of 3- and 7-branes in type I theory. We analyse the large-N limit of the measure and find that it admits two classes of saddle points: In the first class the space of collective coordinates has the geometry of $AdS_5times S^3$ which on the string theory side has the interpretation of the D-instantons being stuck on the 7-branes and therefore the resulting moduli space being $AdS_5times S^3$, In the second class the geometry is $AdS_5times S^5/Z_2$ and on the string theory side it means that the D-instantons are free to move in the 10-dimensional bulk. We discuss in detail a correlator of four O(8) flavour currents on the Yang-Mills side, which receives contributions from the first type of saddle points only, and show that it matches with the correlator obtained from $F^4$ coupling on the string theory side, which receives contribution from D-instantons, in perfect accord with the AdS/CFT correspondence. In particular we observe that the sectors with odd number of instantons give contribution to an O(8)-odd invariant coupling, thereby breaking O(8) down to SO(8) in type I string theory. We finally discuss correlators related to $R^4$, which receive contributions from both saddle points.
Curvature tensors of higher-spin gauge theories have been known for some time. In the past, they were postulated using a generalization of the symmetry properties of the Riemann tensor (curl on each index of a totally symmetric rank-$n$ field for eac h spin-$n$). For this reason they are sometimes referred to as the generalized Riemann tensors. In this article, a method for deriving these curvature tensors from first principles is presented; the derivation is completed without any a priori knowledge of the existence of the Riemann tensors or the curvature tensors of higher-spin gauge theories. To perform this derivation, a recently developed procedure for deriving exactly gauge invariant Lagrangian densities from quadratic combinations of $N$ order of derivatives and $M$ rank of tensor potential is applied to the $N = M = n$ case under the spin-$n$ gauge transformations. This procedure uniquely yields the Lagrangian for classical electrodynamics in the $N = M = 1$ case and the Lagrangian for higher derivative gravity (`Riemann and `Ricci squared terms) in the $N = M = 2$ case. It is proven here by direct calculation for the $N = M = 3$ case that the unique solution to this procedure is the spin-3 curvature tensor and its contractions. The spin-4 curvature tensor is also uniquely derived for the $N = M = 4$ case. In other words, it is proven here that, for the most general linear combination of scalars built from $N$ derivatives and $M$ rank of tensor potential, up to $N=M=4$, there exists a unique solution to the resulting system of linear equations as the contracted spin-$n$ curvature tensors. Conjectures regarding the solutions to the higher spin-$n$ $N = M = n$ are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا