ترغب بنشر مسار تعليمي؟ اضغط هنا

Nested coordinate Bethe wavefunctions from the Bethe/gauge correspondence

109   0   0.0 ( 0 )
 نشر من قبل Masahide Manabe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In [1, 2], Nekrasov applied the Bethe/gauge correspondence to derive the $mathfrak{su}, (2)$ XXX spin-chain coordinate Bethe wavefunction from the IR limit of a 2D $mathcal{N}=(2, 2)$ supersymmetric $A_1$ quiver gauge theory with an orbifold-type codimension-2 defect. Later, Bullimore, Kim and Lukowski implemented Nekrasovs construction at the level of the UV $A_1$ quiver gauge theory, recovered his result, and obtained further extensions of the Bethe/gauge correspondence [3]. In this work, we extend the construction of the defect to $A_M$ quiver gauge theories to obtain the $mathfrak{su} , ( M + 1 )$ XXX spin-chain nested coordinate Bethe wavefunctions. The extension to XXZ spin-chain is straightforward. Further, we apply a Higgsing procedure to obtain more general $A_M$ quivers and the corresponding wavefunctions, and interpret this procedure (and the Hanany-Witten moves that it involves) on the spin-chain side in terms of Izergin-Korepin-type specializations (and re-assignments) of the parameters of the coordinate Bethe wavefunctions.



قيم البحث

اقرأ أيضاً

133 - Taro Kimura , Rui-Dong Zhu 2020
In this article, we extend the work of arXiv:0901.4744 to a Bethe/Gauge correspondence between 2d (or resp. 3d) SO/Sp gauge theories and open XXX (resp. XXZ) spin chains with diagonal boundary conditions. The case of linear quiver gauge theories is also considered.
77 - Pascal Grange 2017
The discrete polymer model with random Boltzmann weights with homogeneous inverse gamma distribution, introduced by Seppalainen, is studied in the case of a polymer with one fixed and one free end. The model with two fixed ends has been integrated by Thiery and Le Doussal, using coordinate Bethe Ansatz techniques and an analytic-continuation prescription. The probability distribution of the free energy has been obtained through the replica method, even though the moments of the partition sum do not exist at all orders due to the fat tail in the distribution of Boltzmann weights. To extend this approach to the polymer with one free end, we argue that the contribution to the partition sums in the thermodynamic limit is localised on parity-invariant string states. This situation is analogous to the case of the continuum polymer with one free end, related to the Kardar--Parisi--Zhang equation with flat boundary conditions and solved by Le Doussal and Calabrese. The expansion of the generating function of the partition sum in terms of numbers of strings can also be transposed to the log-gamma polymer model, with the induced Fredholm determinant structure. We derive the large-time limit of the rescaled cumulative distribution function, and relate it to the GOE Tracy--Widom distribution. The derivation is conjectural in the sense that it assumes completeness of a family of string states (and expressions of their norms already used in the fixed-end problem) and extends heuristically the order of moments of the partition sum to the complex plane.
We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particl es in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.
306 - Ivan Kostov , Yutaka Matsuo 2012
We study the inner product of Bethe states in the inhomogeneous periodic XXX spin-1/2 chain of length L, which is given by the Slavnov determinant formula. We show that the inner product of an on-shell M-magnon state with a generic M-magnon state is given by the same expression as the inner product of a 2M-magnon state with a vacuum descendent. The second inner product is proportional to the partition function of the six-vertex model on a rectangular Lx2M grid, with partial domain-wall boundary conditions.
By incorporating higher-form symmetries, we propose a refined definition of the theories obtained by compactification of the 6d $(2,0)$ theory on a three-manifold $M_3$. This generalization is applicable to both the 3d $mathcal{N}=2$ and $mathcal{N}= 1$ supersymmetric reductions. An observable that is sensitive to the higher-form symmetries is the Witten index, which can be computed by counting solutions to a set of Bethe equations that are determined by $M_3$. This is carried out in detail for $M_3$ a Seifert manifold, where we compute a refined version of the Witten index. In the context of the 3d-3d correspondence, we complement this analysis in the dual topological theory, and determine the refined counting of flat connections on $M_3$, which matches the Witten index computation that takes the higher-form symmetries into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا