ﻻ يوجد ملخص باللغة العربية
Curvature tensors of higher-spin gauge theories have been known for some time. In the past, they were postulated using a generalization of the symmetry properties of the Riemann tensor (curl on each index of a totally symmetric rank-$n$ field for each spin-$n$). For this reason they are sometimes referred to as the generalized Riemann tensors. In this article, a method for deriving these curvature tensors from first principles is presented; the derivation is completed without any a priori knowledge of the existence of the Riemann tensors or the curvature tensors of higher-spin gauge theories. To perform this derivation, a recently developed procedure for deriving exactly gauge invariant Lagrangian densities from quadratic combinations of $N$ order of derivatives and $M$ rank of tensor potential is applied to the $N = M = n$ case under the spin-$n$ gauge transformations. This procedure uniquely yields the Lagrangian for classical electrodynamics in the $N = M = 1$ case and the Lagrangian for higher derivative gravity (`Riemann and `Ricci squared terms) in the $N = M = 2$ case. It is proven here by direct calculation for the $N = M = 3$ case that the unique solution to this procedure is the spin-3 curvature tensor and its contractions. The spin-4 curvature tensor is also uniquely derived for the $N = M = 4$ case. In other words, it is proven here that, for the most general linear combination of scalars built from $N$ derivatives and $M$ rank of tensor potential, up to $N=M=4$, there exists a unique solution to the resulting system of linear equations as the contracted spin-$n$ curvature tensors. Conjectures regarding the solutions to the higher spin-$n$ $N = M = n$ are discussed.
We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having $k$ rows, on a basis of the BRST--BFV approach suggested for bosonic fields
The details of unconstrained Lagrangian formulations (being continuation of earlier developed research for Bose particles in NPB 862 (2012) 270, [arXiv:1110.5044[hep-th]], Phys. of Part. and Nucl. 43 (2012) 689, [arXiv:1202.4710 [hep-th]]) are review
We elaborate on the spin projection operators in three dimensions and use them to derive a new representation for the linearised higher-spin Cotton tensors.
A new class of higher-spin gauge theories associated with various Coxeter groups is proposed. The emphasize is on the $B_p$--models. The cases of $B_1$ and its infinite graded-symmetric product $sym,(times B_1)^infty$ correspond to the usual higher-s
In this article, we extend the work of arXiv:0901.4744 to a Bethe/Gauge correspondence between 2d (or resp. 3d) SO/Sp gauge theories and open XXX (resp. XXZ) spin chains with diagonal boundary conditions. The case of linear quiver gauge theories is also considered.