ﻻ يوجد ملخص باللغة العربية
We introduce a new updating rule, the conditional maximum likelihood rule (CML) for updating ambiguous information. The CML formula replaces the likelihood term in Bayes rule with the maximal likelihood of the given signal conditional on the state. We show that CML satisfies a new axiom, increased sensitivity after updating, while other updating rules do not. With CML, a decision makers posterior is unaffected by the order in which independent signals arrive. CML also accommodates recent experimental findings on updating signals of unknown accuracy and has simple predictions on learning with such signals. We show that an information designer can almost achieve her maximal payoff with a suitable ambiguous information structure whenever the agent updates according to CML.
This note shows that the value of ambiguous persuasion characterized in Beauchene, Li and Li(2019) can be given by a concavification program as in Bayesian persuasion (Kamenica and Gentzkow, 2011). More specifically, it implies that an ambiguous pers
Cheng(2021) proposes and characterizes Relative Maximum Likelihood (RML) updating rule when the ambiguous beliefs are represented by a set of priors. Relatedly, this note proposes and characterizes Extended RML updating rule when the ambiguous belief
We address the problem of how to optimally schedule data packets over an unreliable channel in order to minimize the estimation error of a simple-to-implement remote linear estimator using a constant Kalman gain to track the state of a Gauss Markov p
Sensor sources submit updates to a monitor through an unslotted, uncoordinated, unreliable multiple access collision channel. The channel is unreliable; a collision-free transmission is received successfully at the monitor with some transmission succ
We consider the problem of a decision-maker searching for information on multiple alternatives when information is learned on all alternatives simultaneously. The decision-maker has a running cost of searching for information, and has to decide when