ﻻ يوجد ملخص باللغة العربية
We address the problem of how to optimally schedule data packets over an unreliable channel in order to minimize the estimation error of a simple-to-implement remote linear estimator using a constant Kalman gain to track the state of a Gauss Markov process. The remote estimator receives time-stamped data packets which contain noisy observations of the process. Additionally, they also contain the information about the quality of the sensor source, i.e., the variance of the observation noise that was used to generate the packet. In order to minimize the estimation error, the scheduler needs to use both while prioritizing packet transmissions. It is shown that a simple index rule that calculates the value of information (VoI) of each packet, and then schedules the packet with the largest current value of VoI, is optimal. The VoI of a packet decreases with its age, and increases with the precision of the source. Thus, we conclude that, for constant filter gains, a policy which minimizes the age of information does not necessarily maximize the estimator performance.
We consider a cache updating system with a source, a cache and a user. There are $n$ files. The source keeps the freshest version of the files which are updated with known rates $lambda_i$. The cache downloads and keeps the freshest version of the fi
It is becoming increasingly clear that an important task for wireless networks is to minimize the age of information (AoI), i.e., the timeliness of information delivery. While mainstream approaches generally rely on the real-time observation of user
Real-time status update in future vehicular networks is vital to enable control-level cooperative autonomous driving. Cellular Vehicle-to-Everything (C-V2X), as one of the most promising vehicular wireless technologies, adopts a Semi-Persistent Sched
Age of Information (AoI) has become an important concept in communications, as it allows system designers to measure the freshness of the information available to remote monitoring or control processes. However, its definition tacitly assumed that ne
We summarize recent contributions in the broad area of age of information (AoI). In particular, we describe the current state of the art in the design and optimization of low-latency cyberphysical systems and applications in which sources send time-s