ﻻ يوجد ملخص باللغة العربية
I examine the molecular dynamics of ice growth from water vapor, focusing on how the attachment kinetics can be augmented by edge-dependent surface diffusion. Although there are significant uncertainties in developing an accurate physical model of this process, it is possible to make some reasonable estimates of surface diffusion rates and admolecule density enhancements, derived from our basic understanding of ice-crystal growth processes. A quantitative model suggests that edge-dependent surface diffusion could substantially enhance terrace nucleation on narrow faceted surfaces, especially at the onset of surface premelting. This result supports our hypothesized mechanism for structure-dependent attachment kinetics, which readily explains the changes in snow crystal growth morphology with temperature depicted in the well-known Nakaya diagram. Many of the model features described here may be amenable to further quantitative investigation using existing computational models of the molecular structure and dynamics of the ice surface.
In this paper I examine snow crystal growth near -4 C in comparison with a comprehensive model that includes Structure-Dependent Attachment Kinetics (SDAK). Together with the previous paper in this series that investigated growth near 14 C, I show th
In this paper I examine snow crystal growth near -14 C in comparison with a comprehensive model that includes Structure-Dependent Attachment Kinetics (SDAK). Analyzing a series of ice-growth observations in air, I show that the data strongly support
I examine a variety of snow crystal growth measurements taken at a temperature of -5 C, as a function of supersaturation, background gas pressure, and crystal morphology. Both plate-like and columnar prismatic forms are observed under different condi
I examine a variety snow crystal growth experiments performed at temperatures near -2 C, as a function of supersaturation, background gas pressure, and crystal morphology. Although the different experimental data were obtained using quite diverse exp
We present a series of experiments investigating the growth of ice crystals from water vapor in the presence of a background gas. We measured growth dynamics at temperatures ranging from -2 C to -25 C, at supersaturations between 0.5 and 30 percent,