ﻻ يوجد ملخص باللغة العربية
I examine a variety of snow crystal growth measurements taken at a temperature of -5 C, as a function of supersaturation, background gas pressure, and crystal morphology. Both plate-like and columnar prismatic forms are observed under different conditions at this temperature, along with a diverse collection of complex dendritic structures. The observations can all be reasonably understood using a single comprehensive physical model for the basal and prism attachment kinetics, together with particle diffusion of water vapor through the surrounding medium and other well-understood physical processes. A critical model feature is structure-dependent attachment kinetics (SDAK), for which the molecular attachment kinetics on a faceted surface depend strongly on the nearby mesoscopic structure of the crystal.
I examine a variety snow crystal growth experiments performed at temperatures near -2 C, as a function of supersaturation, background gas pressure, and crystal morphology. Although the different experimental data were obtained using quite diverse exp
In this paper I examine snow crystal growth near -4 C in comparison with a comprehensive model that includes Structure-Dependent Attachment Kinetics (SDAK). Together with the previous paper in this series that investigated growth near 14 C, I show th
In this paper I examine snow crystal growth near -14 C in comparison with a comprehensive model that includes Structure-Dependent Attachment Kinetics (SDAK). Analyzing a series of ice-growth observations in air, I show that the data strongly support
I examine the molecular dynamics of ice growth from water vapor, focusing on how the attachment kinetics can be augmented by edge-dependent surface diffusion. Although there are significant uncertainties in developing an accurate physical model of th
I describe a semi-empirical molecular model of the surface attachment kinetics governing ice crystal growth from water vapor as a function of temperature, supersaturation, and crystal mesostructure. An important new hypothesis in this model is surfac