ﻻ يوجد ملخص باللغة العربية
We report on the injection locking of an optically levitated nanomechanical oscillator (a silica nanosphere) to resonant intensity modulations of an external optical signal. We explore the characteristic features of injection locking in this system, e.g. the phase pull-in effect and the injection-induced reduction of the oscillation linewidth. Our measurements are in good agreement with theoretical predictions and deepen the analogy of injection locking in levitated optomechanical systems to that in optical systems (lasers). By measuring the force noise of our feedback cooled free-running oscillator, we attain a force sensitivity of $sim23~rm{zN}/sqrt{rm{Hz}}$. This can readily allow, in fairly short integration times, for tests of violations of Newtonian gravity and searching for new small-scale forces. As a proof of concept, we show that the injection locking can be exploited to measure the forces optically induced on levitated nanoparticles, with potential applications in explorations of optical binding and entanglement between optically coupled nanomechanical oscillators.
Nanomechanical resonators are widely operated as force and mass sensors with sensitivities in the zepto-Newton and yocto-gram regime, respectively. Their accuracy, however, is usually undermined by high uncertainties in the effective mass of the syst
Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The requirement on external driving lasers has been significantl
The negatively-charged NV$^-$-center in diamond has shown great success in nanoscale, high-sensitivity magnetometry. Efficient fluorescence detection is crucial for improving the sensitivity. Furthermore, integrated devices enable practicable sensors
We present a simple and effective method to implement an active stabilization of a diode laser with injection locking, which requires minimal user intervenes. The injection locked state of the diode laser is probed by a photodetector, of which sensit
Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating t