ﻻ يوجد ملخص باللغة العربية
Many-body localization (MBL) behavior is analyzed {in an extended Bose-Hubbard model with quasiperiodic infinite-range interactions. No additional disorder is present. Examining level statistics and entanglement entropy of eigenstates we show that a significant fraction of eigenstates of the system is localized in the presence of strong interactions. In spite of this, our results suggest that the system becomes ergodic in the standard thermodynamic limit in which the energy of the system is extensive. At the same time, the MBL regime seems to be stable if one allows for a super-extensive scaling of the energy. We show that our findings can be experimentally verified by studies of time dynamics in many-body cavity quantum electrodynamics setups. The quench spectroscopy is a particularly effective tool that allows us to systematically study energy dependence of time dynamics and to investigate a mobility edge in our system.
Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specificall
The study of critical properties of systems with long-range interactions has attracted in the last decades a continuing interest and motivated the development of several analytical and numerical techniques, in particular in connection with spin model
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exi
Using a numerically exact technique we study spin transport and the evolution of spin-density excitation profiles in a disordered spin-chain with long-range interactions, decaying as a power-law, $r^{-alpha}$ with distance and $alpha<2$. Our study co
We numerically study spin transport and nonequilibrium spin-density profiles in a clean one-dimensional spin-chain with long-range interactions, decaying as a power-law,$r^{-alpha}$ with distance. We find two distinct regimes of transport: for $alpha