ترغب بنشر مسار تعليمي؟ اضغط هنا

Criticality of Spin Systems with Weak Long-Range Interactions

245   0   0.0 ( 0 )
 نشر من قبل Nicolo Defenu Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of critical properties of systems with long-range interactions has attracted in the last decades a continuing interest and motivated the development of several analytical and numerical techniques, in particular in connection with spin models. From the point of view of the investigation of their criticality, a special role is played by systems in which the interactions are long-range enough that their universality class is different from the short-range case and, nevertheless, they maintain the extensivity of thermodynamical quantities. Such interactions are often called weak long-range. In this paper we focus on the study of the critical behaviour of spin systems with weak-long range couplings using renormalization group, and we review their remarkable properties. For the sake of clarity and self-consistency, we start from the classical $O(N)$ spin models and we then move to quantum spin systems.



قيم البحث

اقرأ أيضاً

Using an infinite Matrix Product State (iMPS) technique based on the time-dependent variational principle (TDVP), we study two major types of dynamical phase transitions (DPT) in the one-dimensional transverse-field Ising model (TFIM) with long-range power-law ($propto1/r^{alpha}$ with $r$ inter-spin distance) interactions out of equilibrium in the thermodynamic limit -- textit{DPT-I}: based on an order parameter in a (quasi-)steady state, and textit{DPT-II}: based on non-analyticities (cusps) in the Loschmidt-echo return rate. We construct the corresponding rich dynamical phase diagram, whilst considering different quench initial conditions. We find a nontrivial connection between both types of DPT based on their critical lines. Moreover, and very interestingly, we detect a new DPT-II dynamical phase in a certain range of interaction exponent $alpha$, characterized by what we call textit{anomalous cusps} that are distinct from the textit{regular cusps} usually associated with DPT-II. Our results provide the characterization of experimentally accessible signatures of the dynamical phases studied in this work.
We study the thermodynamics and critical behavior of su($m|n$) supersymmetric spin chains of Haldane-Shastry type with a chemical potential term. We obtain a closed-form expression for the partition function and deduce a description of the spectrum i n terms of the supersymmetric version of Haldanes motifs, which we apply to obtain an analytic expression for the free energy per site in the thermodynamic limit. By studying the low-temperature behavior of the free energy, we characterize the critical behavior of the chains with $1le m,nle2$, determining the critical regions and the corresponding central charge. We also show that in the su($2|1$), su($1|2$) and su($2|2$) chains the bosonic or fermionic densities can undergo first-order (discontinuous) phase transitions at $T=0$, in contrast with the previously studied su(2) case.
The existence or absence of non-analytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. H owever, numerical evidence in a recent study [J. C. Halimeh and V. Zauner-Stauber, arXiv:1610.02019] suggests that instead of the trivial phase a distinct anomalous dynamical phase characterized by a novel type of non-analytic cusps occurs in the one-dimensional transverse-field Ising model when interactions are sufficiently long-range. Using an analytic semiclassical approach and exact diagonalization, we show that this anomalous phase also arises in the fully-connected case of infinite-range interactions, and we discuss its defining signature. Our results show that the transition from the regular to the anomalous dynamical phase coincides with Z2-symmetry breaking in the infinite-time limit, thereby showing a connection between two different concepts of dynamical criticality. Our work further expands the dynamical phase diagram of long-range interacting quantum spin chains, and can be tested experimentally in ion-trap setups and ultracold atoms in optical cavities, where interactions are inherently long-range.
We study two dimensional stripe forming systems with competing repulsive interactions decaying as $r^{-alpha}$. We derive an effective Hamiltonian with a short range part and a generalized dipolar interaction which depends on the exponent $alpha$. An approximate map of this model to a known XY model with dipolar interactions allows us to conclude that, for $alpha <2$ long range orientational order of stripes can exist in two dimensions, and establish the universality class of the models. When $alpha geq 2$ no long-range order is possible, but a phase transition in the KT universality class is still present. These two different critical scenarios should be observed in experimentally relevant two dimensional systems like electronic liquids ($alpha=1$) and dipolar magnetic films ($alpha=3$). Results from Langevin simulations of Coulomb and dipolar systems give support to the theoretical results.
Many-body localization (MBL) behavior is analyzed {in an extended Bose-Hubbard model with quasiperiodic infinite-range interactions. No additional disorder is present. Examining level statistics and entanglement entropy of eigenstates we show that a significant fraction of eigenstates of the system is localized in the presence of strong interactions. In spite of this, our results suggest that the system becomes ergodic in the standard thermodynamic limit in which the energy of the system is extensive. At the same time, the MBL regime seems to be stable if one allows for a super-extensive scaling of the energy. We show that our findings can be experimentally verified by studies of time dynamics in many-body cavity quantum electrodynamics setups. The quench spectroscopy is a particularly effective tool that allows us to systematically study energy dependence of time dynamics and to investigate a mobility edge in our system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا