ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin transport in long-range interacting one-dimensional chain

119   0   0.0 ( 0 )
 نشر من قبل Yevgeny Bar Lev
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically study spin transport and nonequilibrium spin-density profiles in a clean one-dimensional spin-chain with long-range interactions, decaying as a power-law,$r^{-alpha}$ with distance. We find two distinct regimes of transport: for $alpha<1/2$, spin excitations relax instantaneously in the thermodynamic limit, and for $alpha>1/2$, spin transport combines both diffusive and superdiffusive features. We show that while for $alpha>3/2$ the spin diffusion coefficient is finite, transport in the system is never strictly diffusive, contrary to corresponding classical systems.

قيم البحث

اقرأ أيضاً

Using a numerically exact technique we study spin transport and the evolution of spin-density excitation profiles in a disordered spin-chain with long-range interactions, decaying as a power-law, $r^{-alpha}$ with distance and $alpha<2$. Our study co nfirms the prediction of recent theories that the system is delocalized in this parameters regime. Moreover we find that for $alpha>3/2$ the underlying transport is diffusive with a transient super-diffusive tail, similarly to the situation in clean long-range systems. We generalize the Griffiths picture to long-range systems and show that it captures the essential properties of the exact dynamics.
Coherent many-body quantum dynamics lies at the heart of quantum simulation and quantum computation. Both require coherent evolution in the exponentially large Hilbert space of an interacting many-body system. To date, trapped ions have defined the s tate of the art in terms of achievable coherence times in interacting spin chains. Here, we establish an alternative platform by reporting on the observation of coherent, fully interaction-driven quantum revivals of the magnetization in Rydberg-dressed Ising spin chains of atoms trapped in an optical lattice. We identify partial many-body revivals at up to about ten times the characteristic time scale set by the interactions. At the same time, single-site-resolved correlation measurements link the magnetization dynamics with inter-spin correlations appearing at different distances during the evolution. These results mark an enabling step towards the implementation of Rydberg atom based quantum annealers, quantum simulations of higher dimensional complex magnetic Hamiltonians, and itinerant long-range interacting quantum matter.
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state , a spin-excitation remains localized only up to a finite delocalization time, which depends exponentially on the size of the system and the strength of the electric field. This suggests that bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the transient localization in a finite system and for electric fields stronger than the interaction strength can be well approximated by a Magnus expansion up-to times which grow with the electric field strength.
Using an infinite Matrix Product State (iMPS) technique based on the time-dependent variational principle (TDVP), we study two major types of dynamical phase transitions (DPT) in the one-dimensional transverse-field Ising model (TFIM) with long-range power-law ($propto1/r^{alpha}$ with $r$ inter-spin distance) interactions out of equilibrium in the thermodynamic limit -- textit{DPT-I}: based on an order parameter in a (quasi-)steady state, and textit{DPT-II}: based on non-analyticities (cusps) in the Loschmidt-echo return rate. We construct the corresponding rich dynamical phase diagram, whilst considering different quench initial conditions. We find a nontrivial connection between both types of DPT based on their critical lines. Moreover, and very interestingly, we detect a new DPT-II dynamical phase in a certain range of interaction exponent $alpha$, characterized by what we call textit{anomalous cusps} that are distinct from the textit{regular cusps} usually associated with DPT-II. Our results provide the characterization of experimentally accessible signatures of the dynamical phases studied in this work.
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow , subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا