ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Relation Learning with Semantic Correlation Awareness for Link Prediction

67   0   0.0 ( 0 )
 نشر من قبل Yao Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Developing link prediction models to automatically complete knowledge graphs has recently been the focus of significant research interest. The current methods for the link prediction taskhavetwonaturalproblems:1)the relation distributions in KGs are usually unbalanced, and 2) there are many unseen relations that occur in practical situations. These two problems limit the training effectiveness and practical applications of the existing link prediction models. We advocate a holistic understanding of KGs and we propose in this work a unified Generalized Relation Learning framework GRL to address the above two problems, which can be plugged into existing link prediction models. GRL conducts a generalized relation learning, which is aware of semantic correlations between relations that serve as a bridge to connect semantically similar relations. After training with GRL, the closeness of semantically similar relations in vector space and the discrimination of dissimilar relations are improved. We perform comprehensive experiments on six benchmarks to demonstrate the superior capability of GRL in the link prediction task. In particular, GRL is found to enhance the existing link prediction models making them insensitive to unbalanced relation distributions and capable of learning unseen relations.

قيم البحث

اقرأ أيضاً

We consider the setting of an agent with a fixed body interacting with an unknown and uncertain external world. We show that models trained to predict proprioceptive information about the agents body come to represent objects in the external world. I n spite of being trained with only internally available signals, these dynamic body models come to represent external objects through the necessity of predicting their effects on the agents own body. That is, the model learns holistic persistent representations of objects in the world, even though the only training signals are body signals. Our dynamics model is able to successfully predict distributions over 132 sensor readings over 100 steps into the future and we demonstrate that even when the body is no longer in contact with an object, the latent variables of the dynamics model continue to represent its shape. We show that active data collection by maximizing the entropy of predictions about the body---touch sensors, proprioception and vestibular information---leads to learning of dynamic models that show superior performance when used for control. We also collect data from a real robotic hand and show that the same models can be used to answer questions about properties of objects in the real world. Videos with qualitative results of our models are available at https://goo.gl/mZuqAV.
159 - Le Yu , Leilei Sun , Bowen Du 2021
Representation learning on heterogeneous graphs aims to obtain meaningful node representations to facilitate various downstream tasks, such as node classification and link prediction. Existing heterogeneous graph learning methods are primarily develo ped by following the propagation mechanism of node representations. There are few efforts on studying the role of relations for improving the learning of more fine-grained node representations. Indeed, it is important to collaboratively learn the semantic representations of relations and discern node representations with respect to different relation types. To this end, in this paper, we propose a novel Relation-aware Heterogeneous Graph Neural Network, namely R-HGNN, to learn node representations on heterogeneous graphs at a fine-grained level by considering relation-aware characteristics. Specifically, a dedicated graph convolution component is first designed to learn unique node representations from each relation-specific graph separately. Then, a cross-relation message passing module is developed to improve the interactions of node representations across different relations. Also, the relation representations are learned in a layer-wise manner to capture relation semantics, which are used to guide the node representation learning process. Moreover, a semantic fusing module is presented to aggregate relation-aware node representations into a compact representation with the learned relation representations. Finally, we conduct extensive experiments on a variety of graph learning tasks, and experimental results demonstrate that our approach consistently outperforms existing methods among all the tasks.
The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from non-relational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.
Cross features play an important role in click-through rate (CTR) prediction. Most of the existing methods adopt a DNN-based model to capture the cross features in an implicit manner. These implicit methods may lead to a sub-optimized performance due to the limitation in explicit semantic modeling. Although traditional statistical explicit semantic cross features can address the problem in these implicit methods, it still suffers from some challenges, including lack of generalization and expensive memory cost. Few works focus on tackling these challenges. In this paper, we take the first step in learning the explicit semantic cross features and propose Pre-trained Cross Feature learning Graph Neural Networks (PCF-GNN), a GNN based pre-trained model aiming at generating cross features in an explicit fashion. Extensive experiments are conducted on both public and industrial datasets, where PCF-GNN shows competence in both performance and memory-efficiency in various tasks.
130 - Tong Zhao , Gang Liu , Daheng Wang 2021
Learning to predict missing links is important for many graph-based applications. Existing methods were designed to learn the observed association between two sets of variables: (1) the observed graph structure and (2) the existence of link between a pair of nodes. However, the causal relationship between these variables was ignored and we visit the possibility of learning it by simply asking a counterfactual question: would the link exist or not if the observed graph structure became different? To answer this question by causal inference, we consider the information of the node pair as context, global graph structural properties as treatment, and link existence as outcome. In this work, we propose a novel link prediction method that enhances graph learning by the counterfactual inference. It creates counterfactual links from the observed ones, and our method learns representations from both of them. Experiments on a number of benchmark datasets show that our proposed method achieves the state-of-the-art performance on link prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا