ﻻ يوجد ملخص باللغة العربية
Trojan (backdoor) attack is a form of adversarial attack on deep neural networks where the attacker provides victims with a model trained/retrained on malicious data. The backdoor can be activated when a normal input is stamped with a certain pattern called trigger, causing misclassification. Many existing trojan attacks have their triggers being input space patches/objects (e.g., a polygon with solid color) or simple input transformations such as Instagram filters. These simple triggers are susceptible to recent backdoor detection algorithms. We propose a novel deep feature space trojan attack with five characteristics: effectiveness, stealthiness, controllability, robustness and reliance on deep features. We conduct extensive experiments on 9 image classifiers on various datasets including ImageNet to demonstrate these properties and show that our attack can evade state-of-the-art defense.
We propose a new adversarial attack to Deep Neural Networks for image classification. Different from most existing attacks that directly perturb input pixels, our attack focuses on perturbing abstract features, more specifically, features that denote
Deep neural networks often consist of a great number of trainable parameters for extracting powerful features from given datasets. On one hand, massive trainable parameters significantly enhance the performance of these deep networks. On the other ha
A deep neural network is a parametrization of a multilayer mapping of signals in terms of many alternatively arranged linear and nonlinear transformations. The linear transformations, which are generally used in the fully connected as well as convolu
Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of thei
Overfitting is one of the most critical challenges in deep neural networks, and there are various types of regularization methods to improve generalization performance. Injecting noises to hidden units during training, e.g., dropout, is known as a su