ﻻ يوجد ملخص باللغة العربية
We introduce Prove-It, a Python-based general-purpose interactive theorem-proving assistant designed with the goal of making formal theorem proving as easy and natural as informal theorem proving (with moderate training). Prove-It uses a highly-flexible Jupyter notebook-based user interface that documents interactions and proof steps using LaTeX. We review Prove-Its highly expressive representation of expressions, judgments, theorems, and proofs; demonstrate the system by constructing a traditional proof-by-contradiction that $sqrt{2} otinmathbb{Q}$; and discuss how the system avoids inconsistencies such as Russells and Currys paradoxes. Extensive documentation is provided in the appendices about core elements of the system. Current development and future work includes promising applications to quantum circuit manipulation and quantum algorithm verification.
The Students Proof Assistant (SPA) aims to both teach how to use a proof assistant like Isabelle and also to teach how reliable proof assistants are built. Technically it is a miniature proof assistant inside the Isabelle proof assistant. In addition
RedPRL is an experimental proof assistant based on Cartesian cubical computational type theory, a new type theory for higher-dimensional constructions inspired by homotopy type theory. In the style of Nuprl, RedPRL users employ tactics to establish b
The interoperability of proof assistants and the integration of their libraries is a highly valued but elusive goal in the field of theorem proving. As a preparatory step, in previous work, we translated the libraries of multiple proof assistants, sp
The Abella interactive theorem prover has proven to be an effective vehicle for reasoning about relational specifications. However, the system has a limitation that arises from the fact that it is based on a simply typed logic: formalizations that ar
Recently, we developed an automated theorem prover for projective incidence geometry. This prover, based on a combinatorial approach using matroids, proceeds by saturation using the matroid rules. It is designed as an independent tool, implemented in