ﻻ يوجد ملخص باللغة العربية
The Students Proof Assistant (SPA) aims to both teach how to use a proof assistant like Isabelle and also to teach how reliable proof assistants are built. Technically it is a miniature proof assistant inside the Isabelle proof assistant. In addition we conjecture that a good way to teach structured proving is with a concrete prover where the connection between semantics, proof system, and prover is clear. The proofs in Lamports TLAPS proof assistant have a very similar structure to those in the declarative prover SPA. To illustrate this we compare a proof of Pelletiers problem 43 in TLAPS, Isabelle/Isar and SPA. We also consider Pelletiers problem 34, also known as Andrewss Challenge, where students are encouraged to develop their own justification function and thus obtain a lot of insight into the proof assistant. Although SPA is fully functional we have so far only used it in a few educational scenarios.
RedPRL is an experimental proof assistant based on Cartesian cubical computational type theory, a new type theory for higher-dimensional constructions inspired by homotopy type theory. In the style of Nuprl, RedPRL users employ tactics to establish b
The interoperability of proof assistants and the integration of their libraries is a highly valued but elusive goal in the field of theorem proving. As a preparatory step, in previous work, we translated the libraries of multiple proof assistants, sp
The Abella interactive theorem prover has proven to be an effective vehicle for reasoning about relational specifications. However, the system has a limitation that arises from the fact that it is based on a simply typed logic: formalizations that ar
We introduce Prove-It, a Python-based general-purpose interactive theorem-proving assistant designed with the goal of making formal theorem proving as easy and natural as informal theorem proving (with moderate training). Prove-It uses a highly-flexi
Recently, we developed an automated theorem prover for projective incidence geometry. This prover, based on a combinatorial approach using matroids, proceeds by saturation using the matroid rules. It is designed as an independent tool, implemented in