ﻻ يوجد ملخص باللغة العربية
The interoperability of proof assistants and the integration of their libraries is a highly valued but elusive goal in the field of theorem proving. As a preparatory step, in previous work, we translated the libraries of multiple proof assistants, specifically the ones of Coq, HOL Light, IMPS, Isabelle, Mizar, and PVS into a universal format: OMDoc/MMT. Each translation presented tremendous theoretical, technical, and social challenges, some universal and some system-specific, some solvable and some still open. In this paper, we survey these challenges and compare and evaluate the solutions we chose. We believe similar library translations will be an essential part of any future system interoperability solution and our experiences will prove valuable to others undertaking such efforts.
Recently, we developed an automated theorem prover for projective incidence geometry. This prover, based on a combinatorial approach using matroids, proceeds by saturation using the matroid rules. It is designed as an independent tool, implemented in
The Students Proof Assistant (SPA) aims to both teach how to use a proof assistant like Isabelle and also to teach how reliable proof assistants are built. Technically it is a miniature proof assistant inside the Isabelle proof assistant. In addition
RedPRL is an experimental proof assistant based on Cartesian cubical computational type theory, a new type theory for higher-dimensional constructions inspired by homotopy type theory. In the style of Nuprl, RedPRL users employ tactics to establish b
The Abella interactive theorem prover has proven to be an effective vehicle for reasoning about relational specifications. However, the system has a limitation that arises from the fact that it is based on a simply typed logic: formalizations that ar
The heterogeneous nature of the logical foundations used in different interactive proof assistant libraries has rendered discovery of similar mathematical concepts among them difficult. In this paper, we compare a previously proposed algorithm for ma