ﻻ يوجد ملخص باللغة العربية
We introduce Deep Reasoning Networks (DRNets), an end-to-end framework that combines deep learning with reasoning for solving complex tasks, typically in an unsupervised or weakly-supervised setting. DRNets exploit problem structure and prior knowledge by tightly combining logic and constraint reasoning with stochastic-gradient-based neural network optimization. We illustrate the power of DRNets on de-mixing overlapping hand-written Sudokus (Multi-MNIST-Sudoku) and on a substantially more complex task in scientific discovery that concerns inferring crystal structures of materials from X-ray diffraction data under thermodynamic rules (Crystal-Structure-Phase-Mapping). At a high level, DRNets encode a structured latent space of the input data, which is constrained to adhere to prior knowledge by a reasoning module. The structured latent encoding is used by a generative decoder to generate the targeted output. Finally, an overall objective combines responses from the generative decoder (thinking fast) and the reasoning module (thinking slow), which is optimized using constraint-aware stochastic gradient descent. We show how to encode different tasks as DRNets and demonstrate DRNets effectiveness with detailed experiments: DRNets significantly outperform the state of the art and experts capabilities on Crystal-Structure-Phase-Mapping, recovering more precise and physically meaningful crystal structures. On Multi-MNIST-Sudoku, DRNets perfectly recovered the mixed Sudokus digits, with 100% digit accuracy, outperforming the supervised state-of-the-art MNIST de-mixing models. Finally, as a proof of concept, we also show how DRNets can solve standard combinatorial problems -- 9-by-9 Sudoku puzzles and Boolean satisfiability problems (SAT), outperforming other specialized deep learning models. DRNets are general and can be adapted and expanded to tackle other tasks.
To facilitate a wide-spread acceptance of AI systems guiding decision making in real-world applications, trustworthiness of deployed models is key. That is, it is crucial for predictive models to be uncertainty-aware and yield well-calibrated (and th
Integrating logical reasoning within deep learning architectures has been a major goal of modern AI systems. In this paper, we propose a new direction toward this goal by introducing a differentiable (smoothed) maximum satisfiability (MAXSAT) solver
We study reinforcement learning in settings where sampling an action from the policy must be done concurrently with the time evolution of the controlled system, such as when a robot must decide on the next action while still performing the previous a
Decomposing knowledge into interchangeable pieces promises a generalization advantage when there are changes in distribution. A learning agent interacting with its environment is likely to be faced with situations requiring novel combinations of exis
Our objective is language-based search of large-scale image and video datasets. For this task, the approach that consists of independently mapping text and vision to a joint embedding space, a.k.a. dual encoders, is attractive as retrieval scales and