ﻻ يوجد ملخص باللغة العربية
Micro and nanodroplets have many important applications such as in drug delivery, liquid-liquid extraction, nanomaterial synthesis and cosmetics. A commonly used method to generate a large number of micro or nanodroplets in one simple step is solvent exchange (also called nanoprecipitation), in which a good solvent of the droplet phase is displaced by a poor one, generating an oversaturation pulse that leads to droplet nucleation. Despite its crucial importance, the droplet growth resulting from the oversaturation pulse in this ternary system is still poorly understood. We experimentally and theoretically study this growth in Hele-Shaw like channels by measuring the total volume of the oil droplets that nucleates out of it. In order to prevent the oversaturated oil from exiting the channel, we decorated some of the channels with a porous region in the middle. Solvent exchange is performed with various solution compositions, flow rates and channel geometries, and the measured droplets volume is found to increase with the Peclet number $Pe$ with an approximate effective power law $Vpropto Pe^{0.50}$. A theoretical model is developed to account for this finding. With this model we can indeed explain the $Vpropto Pe^{1/2}$ scaling, including the prefactor, which can collapse all data of the porous channels onto one universal curve, irrespective of channel geometry and composition of the mixtures. Our work provides a macroscopic approach to this bottom-up method of droplet generation and may guide further studies on oversaturation and nucleation in ternary systems.
Solvent exchange (also called solvent shifting or Ouzo effect) is a generally used bottom-up process to mass-produce nanoscale droplets. In this process, a good solvent for some oil is displaced by a poor one, leading to oil nanodroplet nucleation an
Water vapor condensation is common in nature and widely used in industrial applications, including water harvesting, power generation, and desalination. As compared to traditional filmwise condensation, dropwise condensation on lubricant-infused surf
We study microfluidic self digitization in Hele-Shaw cells using pancake droplets anchored to surface tension traps. We show that above a critical flow rate, large anchored droplets break up to form two daughter droplets, one of which remains in the
We present an analytical study, validated by numerical simulations, of electroosmotic flow in a Hele-Shaw cell with non-uniform surface charge patterning. Applying the lubrication approximation and assuming thin electric double layer, we obtain a pai
The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous