ﻻ يوجد ملخص باللغة العربية
Water vapor condensation is common in nature and widely used in industrial applications, including water harvesting, power generation, and desalination. As compared to traditional filmwise condensation, dropwise condensation on lubricant-infused surfaces (LIS) can lead to an order-of-magnitude increase in heat transfer rates. Small droplets (with the diameter below 100 $mu$m) account for nearly 85 percent of the total heat transfer and droplet sweeping plays a crucial role in clearing nucleation sites, allowing for frequent re-nucleation. Here, we focus on the dynamic interplay of microdroplets with the thin lubricant film during water vapor condensation on LIS. Coupling high-speed imaging, optical microscopy, and interferometry, we show that the initially uniform lubricant film re-distributes during condensation. Governed by lubricant height gradients, microdroplets as small as 2 $mu$m in diameter undergo rigorous and gravity-independent self-propulsion, travelling distances multiples of their diameters at velocities up to 1100 $mu$m/s. Although macroscopically the movement appears to be random, we show that on a microscopic level capillary attraction due to asymmetrical lubricant menisci causes this gravity-independent droplet motion. Based on a lateral force balance analysis, we quantitatively find that the sliding velocity initially increases during movement, but decreases sharply at shorter inter-droplet spacing. The maximum sliding velocity is inversely proportional to the oil viscosity and is strongly dependent of the droplet size, which is in excellent agreement with the experimental observations. This novel and non-traditional droplet movement is expected to significantly enhance the sweeping efficiency during dropwise condensation, leading to higher nucleation and heat transfer rates.
Lubricant-infused surfaces (LISs) can promote stable dropwise condensation and improve heat transfer rates due to a low nucleation free-energy barrier and high droplet mobility. Topographical differences in the oil surface cause water microdroplets t
Micro and nanodroplets have many important applications such as in drug delivery, liquid-liquid extraction, nanomaterial synthesis and cosmetics. A commonly used method to generate a large number of micro or nanodroplets in one simple step is solvent
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous
We present here a comprehensive derivation for the speed of a small bottom-heavy sphere forced by a transverse acoustic field and thereby establish how density inhomogeneities may play a critical role in acoustic propulsion. The sphere is trapped at