ﻻ يوجد ملخص باللغة العربية
We study microfluidic self digitization in Hele-Shaw cells using pancake droplets anchored to surface tension traps. We show that above a critical flow rate, large anchored droplets break up to form two daughter droplets, one of which remains in the anchor. Below the critical flow velocity for breakup the shape of the anchored drop is given by an elastica equation that depends on the capillary number of the outer fluid. As the velocity crosses the critical value, the equation stops admitting a solution that satisfies the boundary conditions; the drop breaks up in spite of the neck still having finite width. A similar breaking event also takes place between the holes of an array of anchors, which we use to produce a 2D array of stationary drops in situ.
We study here experimentally, numerically and using a lubrication approach; the shape, velocity and lubrication film thickness distribution of a droplet rising in a vertical Hele-Shaw cell. The droplet is surrounded by a stationary immiscible fluid a
The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous
We report experimental results for the Kelvin-Helmholtz instability between two immiscible fluids in parallel flow in a Hele-Shaw cell. We focus our interest on the influence of the gap size between the walls on the instability characteristics. Exper
We adopt a boundary integral method to study the dynamics of a translating droplet confined in a Hele-Shaw cell in the Stokes regime. The droplet is driven by the motion of the ambient fluid with the same viscosity. We characterize the three-dimensio
Interfacial stability is important for many processes involving heat and mass transfer across two immiscible phases. When this transfer takes place in the form of evaporation of a binary solution with one component being more volatile than the other,