ترغب بنشر مسار تعليمي؟ اضغط هنا

Dense Multiscale Feature Fusion Pyramid Networks for Object Detection in UAV-Captured Images

152   0   0.0 ( 0 )
 نشر من قبل Yingjie Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yingjie Liu




اسأل ChatGPT حول البحث

Although much significant progress has been made in the research field of object detection with deep learning, there still exists a challenging task for the objects with small size, which is notably pronounced in UAV-captured images. Addressing these issues, it is a critical need to explore the feature extraction methods that can extract more sufficient feature information of small objects. In this paper, we propose a novel method called Dense Multiscale Feature Fusion Pyramid Networks(DMFFPN), which is aimed at obtaining rich features as much as possible, improving the information propagation and reuse. Specifically, the dense connection is designed to fully utilize the representation from the different convolutional layers. Furthermore, cascade architecture is applied in the second stage to enhance the localization capability. Experiments on the drone-based datasets named VisDrone-DET suggest a competitive performance of our method.



قيم البحث

اقرأ أيضاً

State-of-the-art (SoTA) models have improved the accuracy of object detection with a large margin via a FP (feature pyramid). FP is a top-down aggregation to collect semantically strong features to improve scale invariance in both two-stage and one-s tage detectors. However, this top-down pathway cannot preserve accurate object positions due to the shift-effect of pooling. Thus, the advantage of FP to improve detection accuracy will disappear when more layers are used. The original FP lacks a bottom-up pathway to offset the lost information from lower-layer feature maps. It performs well in large-sized object detection but poor in small-sized object detection. A new structure residual feature pyramid is proposed in this paper. It is bidirectional to fuse both deep and shallow features towards more effective and robust detection for both small-sized and large-sized objects. Due to the residual nature, it can be easily trained and integrated to different backbones (even deeper or lighter) than other bi-directional methods. One important property of this residual FP is: accuracy improvement is still found even if more layers are adopted. Extensive experiments on VOC and MS COCO datasets showed the proposed method achieved the SoTA results for highly-accurate and efficient object detection..
We propose the Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN) for fast and accurate single-shot object detection. Feature Pyramid (FP) is widely used in recent visual detection, however the top-down pathway of FP cannot preserve accura te localization due to pooling shifting. The advantage of FP is weaken as deeper backbones with more layers are used. To address this issue, we propose a new parallel FP structure with bi-directional (top-down and bottom-up) fusion and associated improvements to retain high-quality features for accurate localization. Our method is particularly suitable for detecting small objects. We provide the following design improvements: (1) A parallel bifusion FP structure with a Bottom-up Fusion Module (BFM) to detect both small and large objects at once with high accuracy. (2) A COncatenation and RE-organization (CORE) module provides a bottom-up pathway for feature fusion, which leads to the bi-directional fusion FP that can recover lost information from lower-layer feature maps. (3) The CORE feature is further purified to retain richer contextual information. Such purification is performed with CORE in a few iterations in both top-down and bottom-up pathways. (4) The adding of a residual design to CORE leads to a new Re-CORE module that enables easy training and integration with a wide range of (deeper or lighter) backbones. The proposed network achieves state-of-the-art performance on UAVDT17 and MS COCO datasets.
187 - Gangming Zhao , Weifeng Ge , 2021
Feature pyramids have been proven powerful in image understanding tasks that require multi-scale features. State-of-the-art methods for multi-scale feature learning focus on performing feature interactions across space and scales using neural network s with a fixed topology. In this paper, we propose graph feature pyramid networks that are capable of adapting their topological structures to varying intrinsic image structures and supporting simultaneous feature interactions across all scales. We first define an image-specific superpixel hierarchy for each input image to represent its intrinsic image structures. The graph feature pyramid network inherits its structure from this superpixel hierarchy. Contextual and hierarchical layers are designed to achieve feature interactions within the same scale and across different scales. To make these layers more powerful, we introduce two types of local channel attention for graph neural networks by generalizing global channel attention for convolutional neural networks. The proposed graph feature pyramid network can enhance the multiscale features from a convolutional feature pyramid network. We evaluate our graph feature pyramid network in the object detection task by integrating it into the Faster R-CNN algorithm. The modified algorithm outperforms not only previous state-of-the-art feature pyramid-based methods with a clear margin but also other popular detection methods on both MS-COCO 2017 validation and test datasets.
Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously learn object locations and detection. Even though the established approaches well perform f or the objects of regular sizes, they achieve weak performance when analyzing small ones or getting stuck in the local minima (e.g. false object parts). Two possible issues stand in their way. First, the existing methods struggle to perform stably on the detection of small objects because of the complicated background. Second, most of the standard methods used hand-crafted features, and do not work well on the detection of objects parts of which are missing. We here address the above issues and propose a new architecture with a multiple patch feature pyramid network (MPFP-Net). Different from the current models that during training only pursue the most discriminative patches, in MPFPNet the patches are divided into class-affiliated subsets, in which the patches are related and based on the primary loss function, a sequence of smooth loss functions are determined for the subsets to improve the model for collecting small object parts. To enhance the feature representation for patch selection, we introduce an effective method to regularize the residual values and make the fusion transition layers strictly norm-preserving. The network contains bottom-up and crosswise connections to fuse the features of different scales to achieve better accuracy, compared to several state-of-the-art object detection models. Also, the developed architecture is more efficient than the baselines.
318 - Han Qiu , Yuchen Ma , Zeming Li 2020
Dense object detectors rely on the sliding-window paradigm that predicts the object over a regular grid of image. Meanwhile, the feature maps on the point of the grid are adopted to generate the bounding box predictions. The point feature is convenie nt to use but may lack the explicit border information for accurate localization. In this paper, We propose a simple and efficient operator called Border-Align to extract border features from the extreme point of the border to enhance the point feature. Based on the BorderAlign, we design a novel detection architecture called BorderDet, which explicitly exploits the border information for stronger classification and more accurate localization. With ResNet-50 backbone, our method improves single-stage detector FCOS by 2.8 AP gains (38.6 v.s. 41.4). With the ResNeXt-101-DCN backbone, our BorderDet obtains 50.3 AP, outperforming the existing state-of-the-art approaches. The code is available at (https://github.com/Megvii-BaseDetection/BorderDet).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا