ترغب بنشر مسار تعليمي؟ اضغط هنا

Residual Bi-Fusion Feature Pyramid Network for Accurate Single-shot Object Detection

343   0   0.0 ( 0 )
 نشر من قبل Ping-Yang Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

State-of-the-art (SoTA) models have improved the accuracy of object detection with a large margin via a FP (feature pyramid). FP is a top-down aggregation to collect semantically strong features to improve scale invariance in both two-stage and one-stage detectors. However, this top-down pathway cannot preserve accurate object positions due to the shift-effect of pooling. Thus, the advantage of FP to improve detection accuracy will disappear when more layers are used. The original FP lacks a bottom-up pathway to offset the lost information from lower-layer feature maps. It performs well in large-sized object detection but poor in small-sized object detection. A new structure residual feature pyramid is proposed in this paper. It is bidirectional to fuse both deep and shallow features towards more effective and robust detection for both small-sized and large-sized objects. Due to the residual nature, it can be easily trained and integrated to different backbones (even deeper or lighter) than other bi-directional methods. One important property of this residual FP is: accuracy improvement is still found even if more layers are adopted. Extensive experiments on VOC and MS COCO datasets showed the proposed method achieved the SoTA results for highly-accurate and efficient object detection..



قيم البحث

اقرأ أيضاً

We propose the Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN) for fast and accurate single-shot object detection. Feature Pyramid (FP) is widely used in recent visual detection, however the top-down pathway of FP cannot preserve accura te localization due to pooling shifting. The advantage of FP is weaken as deeper backbones with more layers are used. To address this issue, we propose a new parallel FP structure with bi-directional (top-down and bottom-up) fusion and associated improvements to retain high-quality features for accurate localization. Our method is particularly suitable for detecting small objects. We provide the following design improvements: (1) A parallel bifusion FP structure with a Bottom-up Fusion Module (BFM) to detect both small and large objects at once with high accuracy. (2) A COncatenation and RE-organization (CORE) module provides a bottom-up pathway for feature fusion, which leads to the bi-directional fusion FP that can recover lost information from lower-layer feature maps. (3) The CORE feature is further purified to retain richer contextual information. Such purification is performed with CORE in a few iterations in both top-down and bottom-up pathways. (4) The adding of a residual design to CORE leads to a new Re-CORE module that enables easy training and integration with a wide range of (deeper or lighter) backbones. The proposed network achieves state-of-the-art performance on UAVDT17 and MS COCO datasets.
187 - Gangming Zhao , Weifeng Ge , 2021
Feature pyramids have been proven powerful in image understanding tasks that require multi-scale features. State-of-the-art methods for multi-scale feature learning focus on performing feature interactions across space and scales using neural network s with a fixed topology. In this paper, we propose graph feature pyramid networks that are capable of adapting their topological structures to varying intrinsic image structures and supporting simultaneous feature interactions across all scales. We first define an image-specific superpixel hierarchy for each input image to represent its intrinsic image structures. The graph feature pyramid network inherits its structure from this superpixel hierarchy. Contextual and hierarchical layers are designed to achieve feature interactions within the same scale and across different scales. To make these layers more powerful, we introduce two types of local channel attention for graph neural networks by generalizing global channel attention for convolutional neural networks. The proposed graph feature pyramid network can enhance the multiscale features from a convolutional feature pyramid network. We evaluate our graph feature pyramid network in the object detection task by integrating it into the Faster R-CNN algorithm. The modified algorithm outperforms not only previous state-of-the-art feature pyramid-based methods with a clear margin but also other popular detection methods on both MS-COCO 2017 validation and test datasets.
Single image rain streaks removal is extremely important since rainy images adversely affect many computer vision systems. Deep learning based methods have found great success in image deraining tasks. In this paper, we propose a novel residual-guide feature fusion network, called ResGuideNet, for single image deraining that progressively predicts highquality reconstruction. Specifically, we propose a cascaded network and adopt residuals generated from shallower blocks to guide deeper blocks. By using this strategy, we can obtain a coarse to fine estimation of negative residual as the blocks go deeper. The outputs of different blocks are merged into the final reconstruction. We adopt recursive convolution to build each block and apply supervision to all intermediate results, which enable our model to achieve promising performance on synthetic and real-world data while using fewer parameters than previous required. ResGuideNet is detachable to meet different rainy conditions. For images with light rain streaks and limited computational resource at test time, we can obtain a decent performance even with several building blocks. Experiments validate that ResGuideNet can benefit other low- and high-level vision tasks.
151 - Yingjie Liu 2020
Although much significant progress has been made in the research field of object detection with deep learning, there still exists a challenging task for the objects with small size, which is notably pronounced in UAV-captured images. Addressing these issues, it is a critical need to explore the feature extraction methods that can extract more sufficient feature information of small objects. In this paper, we propose a novel method called Dense Multiscale Feature Fusion Pyramid Networks(DMFFPN), which is aimed at obtaining rich features as much as possible, improving the information propagation and reuse. Specifically, the dense connection is designed to fully utilize the representation from the different convolutional layers. Furthermore, cascade architecture is applied in the second stage to enhance the localization capability. Experiments on the drone-based datasets named VisDrone-DET suggest a competitive performance of our method.
We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two li mitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work jointly with anchor-based branches by outputting predictions in parallel. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا