ﻻ يوجد ملخص باللغة العربية
We study theoretically the deterministic dynamics of single-domain ferromagnetic nanoparticles in dilute ferrofluids, which is induced by a time-varying gradient magnetic field. Using the force and torque balance equations, we derive a set of the first-order differential equations describing the translational and rotational motions of such particles characterized by small Reynolds numbers. Since the gradient magnetic field generates both the translations and rotations of particles, these motions are coupled. Based on the derived set of equations, we demonstrate this fact explicitly by expressing the particle position through the particle orientation angle, and vice versa. The obtained expressions are used to show that the solution of the basic set of equations is periodic in time and to determine the intervals, where the particle coordinate and orientation angle oscillate. In addition, this set of equations is solved approximately for the case of small characteristic frequency of the particle oscillations. With this condition, we find that all particles perform small translational oscillations near their initial positions. In contrast, the orientation angle oscillates near the initial angle only if particles are located in the vicinity of zero point of the gradient magnetic field. The possible applications of the obtained results in biomedicine and separation processes are also discussed.
The suspended ferromagnetic particles subjected to the gradient and uniform magnetic fields experience both the translational force generated by the field gradient and the rotational torque generated by the fields strengths. Although the uniform fiel
We report the precessional rotation of magnetically isotropic ferromagnetic nanoparticles in a viscous liquid that are subjected to a rotating magnetic field. In contrast to magnetically anisotropic nanoparticles, the rotation of which occurs due to
In this paper, we derive the mean-field limit of a collective dynamics model with time-varying weights, for weight dynamics that preserve the total mass of the system as well as indistinguishability of the agents. The limit equation is a transport eq
Magnetic skyrmionium is a novel magnetization configuration with zero skyrmion number, which is composed by two skyrmions with opposite skyrmion number. Here, we study the dynamics of skyrmionium under an anisotropy gradient. We find that the skyrmio
A simple model of an atomic Bose-Einstein condensate in a box whose size varies with time is studied to determine the nature of adiabaticity in the nonlinear dynamics obtained within the Gross-Pitaevskii equation (the nonlinear Schr{o}dinger equation