ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissipation-induced rotation of suspended ferromagnetic nanoparticles

198   0   0.0 ( 0 )
 نشر من قبل Stanislav Denisov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the precessional rotation of magnetically isotropic ferromagnetic nanoparticles in a viscous liquid that are subjected to a rotating magnetic field. In contrast to magnetically anisotropic nanoparticles, the rotation of which occurs due to coupling between the magnetic and lattice subsystems through magnetocrystalline anisotropy, the rotation of isotropic nanoparticles is induced only by magnetic dissipation processes. We propose a theory of this phenomenon based on a set of equations describing the deterministic magnetic and rotational dynamics of such particles. Neglecting inertial effects, we solve these equations analytically, find the magnetization and particle precessions in the steady state, determine the components of the particle angular velocity and analyze their dependence on the model parameters. The possibility of experimental observation of this phenomenon is also discussed.



قيم البحث

اقرأ أيضاً

The suspended ferromagnetic particles subjected to the gradient and uniform magnetic fields experience both the translational force generated by the field gradient and the rotational torque generated by the fields strengths. Although the uniform fiel d does not contribute to the force, it nevertheless influences the translational motion of these particles. This occurs because the translational force depends on the direction of the particle magnetization, which in turn depends on the fields strengths. To study this influence, a minimal set of equations describing the coupled translational and rotational motions of nanosized ferromagnetic particles is introduced and solved in the low Reynolds number approximation. Trajectory analysis reveals that, depending on the initial positions of nanoparticles, there exist four regimes of their directed transport. The intervals of initial positions that correspond to different dynamical regimes are determined, their dependence on the uniform magnetic field is established, and strong impact of this field on the directed transport is demonstrated. The ability and efficiency of the uniform magnetic field to control the separation of suspended ferromagnetic nanoparticles is also discussed.
A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated th at the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the effect of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.
We study theoretically the deterministic dynamics of single-domain ferromagnetic nanoparticles in dilute ferrofluids, which is induced by a time-varying gradient magnetic field. Using the force and torque balance equations, we derive a set of the fir st-order differential equations describing the translational and rotational motions of such particles characterized by small Reynolds numbers. Since the gradient magnetic field generates both the translations and rotations of particles, these motions are coupled. Based on the derived set of equations, we demonstrate this fact explicitly by expressing the particle position through the particle orientation angle, and vice versa. The obtained expressions are used to show that the solution of the basic set of equations is periodic in time and to determine the intervals, where the particle coordinate and orientation angle oscillate. In addition, this set of equations is solved approximately for the case of small characteristic frequency of the particle oscillations. With this condition, we find that all particles perform small translational oscillations near their initial positions. In contrast, the orientation angle oscillates near the initial angle only if particles are located in the vicinity of zero point of the gradient magnetic field. The possible applications of the obtained results in biomedicine and separation processes are also discussed.
Genetic information is stored in a linear sequence of base-pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.
We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا