ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced broadband Terahertz radiation from two colour laser pulse interaction with thin dielectric solid target in air

144   0   0.0 ( 0 )
 نشر من قبل Sonal Saxena Miss
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report enhanced broadband Terahertz (THz) generation and detailed characterization from the interaction of femtosecond two colour laser pulses with thin transparent dielectric tape target in ambient air. The proposed source is easy to implement, exhibits excellent scalability with laser energy. Spectral characterization using Fourier transform spectrometer reveals yield enhancement of more than 150 % in the THz region of 0.1 - 10 THz with respect to conventional two-colour laser plasma source in ambient air. Further, the source spectrum extends up to 40 THz with an enhancement of flux > 30 %. Experimental results, well supported with two-dimensional particle-in-cell simulations establishes that the transient photo-current produced by the asymmetric laser pulse interaction with air plasma as well as near solid density plasma formed on the tape surface is responsible for the enhanced terahertz generation. The source will be useful for the multidisciplinary activities and ongoing applications of the laboratory-based terahertz sources.



قيم البحث

اقرأ أيضاً

124 - Y. T. Li , C. Li , M. L. Zhou 2011
We report a plasma-based strong THz source generated by using intense femtosecond laser pulses to irradiate solid targets at relativistic intensity >10^18W/cm2. Energies up to 50 microJ/sr per THz pulse is observed in the specular direction when the laser pulses are incident onto a copper foil at 67.5 degree. The source appears to be linearly polarized. The temporal, spectral properties of the THz are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a strong THz source allows potential applications in THz nonlinear physics.
We study the influence of the polarization states of femtosecond two-color pulses ionizing gases on the emitted terahertz radiation. A local-current model and plane-wave evaluations justify the previously-reported impact on the THz energy yield and a n (almost) linearly-polarized THz field when using circularly-polarized laser harmonics. For such pump pulses, the THz yield is independent on the relative phase between the two colors. When the pump pulses have same helicity, the increase in the THz yield is associated to longer ionization sequences and higher electron transverse momenta acquired in the driving field. Reversely, for two color pulses with opposite helicity, the dramatic loss of THz power comes from destructive interferences driven by the highly symmetric response of the photocurrents lined up on the third harmonic of the fundamental pulse. While our experiments confirm an increased THz yield for circularly polarized pumps of same helicity, surprisingly, the emitted THz radiation is not linearly-polarized. This effect is explained by means of comprehensive 3D numerical simulations highlighting the role of the spatial alignment and non-collinear propagation of the two colors.
We investigate the interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model. Our theoretical predictions are directly confronted with experimental observations in soda-lime glass. We show that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in our simulations correspond very well to zones of permanent material modifications observed in the experiments.
We investigate terahertz emission from two-color fs-laser-induced microplasmas. Under strongest focusing conditions, microplasmas are shown to act as point-sources for broadband terahertz-to-far-infrared radiation, where the emission bandwidth is det ermined by the plasma density. Semi-analytical modeling allows us to identify scaling laws with respect to important laser parameters. In particular, we find that the optical-to-THz conversion efficiency crucially depends on the focusing conditions. We use this insight to demonstrate by means of Maxwell-consistent 3D simulations, that for only 10-$mu$J laser energy a conversion efficiency well above $10^{-4}$ can be achieved.
A way to considerably enhance terahertz radiation, emitted in the interaction of intense mid-infrared laser pulses with atomic gases, in both the total energy and the electric-field amplitude is suggested. The scheme is based on the application of a two-color field consisting of a strong circularly polarized mid-infrared pulse with wavelengths of $1.6div 4,mu{rm m}$ and its linearly or circularly polarized second harmonic of lower intensity. By combining the strong-field approximation for the ionization of a single atom with particle-in-cell simulations of the collective dynamics of the generated plasma it is shown that the application of such two-color circularly polarized laser pulses may lead to an order-of-magnitude increase in the energy emitted in the terahertz frequency domain as well as in a considerable enhancement in the maximal electric field of the terahertz pulse. Our results support recently reported experimental and numerical findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا