ﻻ يوجد ملخص باللغة العربية
A way to considerably enhance terahertz radiation, emitted in the interaction of intense mid-infrared laser pulses with atomic gases, in both the total energy and the electric-field amplitude is suggested. The scheme is based on the application of a two-color field consisting of a strong circularly polarized mid-infrared pulse with wavelengths of $1.6div 4,mu{rm m}$ and its linearly or circularly polarized second harmonic of lower intensity. By combining the strong-field approximation for the ionization of a single atom with particle-in-cell simulations of the collective dynamics of the generated plasma it is shown that the application of such two-color circularly polarized laser pulses may lead to an order-of-magnitude increase in the energy emitted in the terahertz frequency domain as well as in a considerable enhancement in the maximal electric field of the terahertz pulse. Our results support recently reported experimental and numerical findings.
We study the excitation of electron currents in a transparent cell of sub-millimeter size filled by an atomic gas and illuminated by an intense two-color femtosecond laser pulse. The pulse consists of a strong fundamental component and its second har
We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields an
We present experimental studies on ion acceleration from ultra-thin diamond-like carbon (DLC) foils irradiated by ultra-high contrast laser pulses of energy 0.7 J focussed to peak intensities of 5*10^{19} W/cm^2. A reduction in electron heating is ob
Generation of ultrarelativistic polarized positrons during interaction of an ultrarelativistic electron beam with a counterpropagating two-color petawatt laser pulse is investigated theoretically. Our Monte Carlo simulation based on a semi-classical
We study the influence of the polarization states of femtosecond two-color pulses ionizing gases on the emitted terahertz radiation. A local-current model and plane-wave evaluations justify the previously-reported impact on the THz energy yield and a