ﻻ يوجد ملخص باللغة العربية
We investigate terahertz emission from two-color fs-laser-induced microplasmas. Under strongest focusing conditions, microplasmas are shown to act as point-sources for broadband terahertz-to-far-infrared radiation, where the emission bandwidth is determined by the plasma density. Semi-analytical modeling allows us to identify scaling laws with respect to important laser parameters. In particular, we find that the optical-to-THz conversion efficiency crucially depends on the focusing conditions. We use this insight to demonstrate by means of Maxwell-consistent 3D simulations, that for only 10-$mu$J laser energy a conversion efficiency well above $10^{-4}$ can be achieved.
We study the influence of the polarization states of femtosecond two-color pulses ionizing gases on the emitted terahertz radiation. A local-current model and plane-wave evaluations justify the previously-reported impact on the THz energy yield and a
We report enhanced broadband Terahertz (THz) generation and detailed characterization from the interaction of femtosecond two colour laser pulses with thin transparent dielectric tape target in ambient air. The proposed source is easy to implement, e
We disclose an unanticipated link between plasmonics and nonlinear frequency down-conversion in laser-induced gas-plasmas. For two-color femtosecond pump pulses, a plasmonic resonance is shown to broaden the terahertz emission spectra significantly.
Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters,
We consider a two-color formaldehyde PLIF thermometry scheme using a wavelength-switching injection seeding Nd:YAG laser at 355 nm. The 28183.5 cm-1 and 28184.5 cm-1 peaks of formaldehyde are used to measure low temperature combustion zone. Using a b